K22P 1601

Reg. No. :

Name :

I Semester M.Sc. Degree (CBSS – Reg./Sup./Imp.) Examination, October 2022 (2019 Admission Onwards) MATHEMATICS MAT1C01 : Basic Abstract Algebra

Time : 3 Hours

Max. Marks : 80

PART – A

Answer any four questions from this Part. Each question carries 4 marks.

- 1. List the elements of $\mathbb{Z}_2 \times \mathbb{Z}_4$. Find the order of each the elements.
- Let X be a G-set. For x₁, x₂ ∈ X, let x₁ ~ x₂ if and only if there exists g ∈ G such that gx₁ = x₂. Prove that ~ is an equivalence relation on X.
- 3. Let N be a normal subgroup of G and H be any subgroup of G. Prove that $H \lor N = HN = NH$.
- 4. Let H*, H and K be subgroups of G with H* normal in H. Show that H* \cap K is normal in H \cap K.
- 5. Let $f(x) = 2x^2 + 3x + 4$, $g(x) = 3x^2 + 2x + 3$ in $\mathbb{Z}_6[x]$. Find f(x) + g(x) and f(x)g(x).
- Let R be a ring with unity 1. Prove that the map φ : Z → R given by φ(n) = n · 1 for n ∈ Z is a homomorphism of Z into R.

PART - B

Answer any four questions from this Part without omitting any Unit. Each question carries 16 marks.

Unit - I

7. a) Let $G_1, G_2, ..., G_n$ be groups. For $(a_1, a_2, ..., a_n)$ and $(b_1, b_2, ..., b_n)$ in $\prod_{i=1}^{n} G_i$,

define $(a_1, a_2, ..., a_n)$ $(b_1, b_2, ..., b_n)$ to be the element $(a_1b_1, a_2b_2, ..., a_nb_n)$. Prove that $\prod_{n=1}^{n} G_n$ is a group under this operation.

b) State Fundamental theorem of finitely generated Abelian groups.

c) Find all abelian groups of order 16 up to isomorphism.

P.T.O.

K22P 1601

- a) Prove that the group Z_m × Z_n is isomorphic to Z_{mn} if and only if m and n are relatively prime.
 - b) Let X be a G-set and let $x \in G$. Prove that $|G_x| = (G : G_x)$. Also if |G| is finite, show that $|G_x|$ is a divisor of |G|.
- 9. a) State and prove First Sylow theorem.
 - b) Prove that no group of order 96 is simple.

Unit – II

- Prove that any integral domain D can be embedded in a field F such that every element of F can be expressed as a quotient of two elements of D.
- 11. a) State and prove Third isomorphism theorem.
 - b) Define free Abelian group. Prove that \mathbb{Z}_n is not free Abelian.
 - c) Let G ≠ {0} be a free abelian group with a finite basis. Prove that every basis of G is finite and all bases of G have the same number of elements.
- 12. State and prove Schreier theorem.

Unit – III

- 13. a) State and prove division algorithm for F[x].
 - b) State Factor theorem and factorize $x^4 + 3x^3 + 2x + 4 \in \mathbb{Z}_5[x]$.
- 14. a) Let f(x) ∈ F[x] and let f(x) be of degree 2 or 3. Prove that f(x) is reducible over F if and only if it has a zero in F.
 - b) State and prove Eisenstein criterion for irreducibility.
 - c) Prove that $25x^5 9x^4 3x^2 12$ is irreducible over \mathbb{Q} .
- 15. a) Let $R = \left\{ a + b\sqrt{2}/a, b \in \mathbb{Z} \right\}$ and let R' consists of all 2 × 2 matrices of the form $\begin{bmatrix} a & 2b \\ b & a \end{bmatrix}$ for $a, b \in \mathbb{Z}$. Show that R is a subring of \mathbb{R} and R' is a subring of $M_2(\mathbb{Z})$. Also show that $\phi : R \to R'$, where $\phi(a + b\sqrt{2}) = \begin{bmatrix} a & 2b \\ b & a \end{bmatrix}$ is an isomorphism.
 - b) Let R be a commutative ring with unity. Prove that M is a maximal ideal of R if and only if R/M is a field.