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| Semester M.Sc. Degree (CBSS — Reg./Supple./Imp.)
Examination, October 2024

(2022 Admission Onwards)
STATISTICS WITH DATA ANALYTICS
MST1CO02 : Probability Theory

Time : 3 Hours e Max. Marks : 80
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(Answer all questions. Each guestion carriesfi marks.)
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. Define limit of a sequence g{r&gts. ~ .
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Show that arbitrary intersection of'c-fields'is a c-field.
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State Jordan decomposition theorer"r}” ?
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Determine whether 1 =it is a%gﬁ{act ‘I;'STIC function or not.
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}Xand% p—:-Yésn}{ kY—p-~>X+Y.
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State Helly-Bray remma \
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Prove that if X,
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Determine whether weak Iaw Df Iarge numbers hold for the sequences of
random variables {X } with Pl}{k = 2"] i (8x2=16)
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PART - B
(Answer any four questions. Each question carries 4 marks.)
9. Define Borel field with an example. Is it a sigma field ?

10. State and prove continuity property of a probability measure.
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Define expectation of a random variable. Prove the linearity and scale preserving

property of it.

State and prove Jensen's ineqguality.

Prove or disprove X -—P+ X implies X,

Establish Kolmogorov strong law of large numbers for a sequence of

independent random variables.
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a) Show that a g-field is a menetene fleldreﬁﬁ eenverse!y

a.5.

b) Prove or disprove : EVEI’}F ﬁeld IS, ayra‘ﬁeld &

Define a distribution funetzmuew that |t4‘§.~

continuous.
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State and prove basic meque'llty D% uee Markov inequality from it.
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a) Define eenverge/nee i, mean and'almost s(;re convergence ofa

a) State inversion thegrem cher;a‘gt

b) Show that charae’tenstle netlen IS re
is symmetric about 2€70. Q
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(Answer any four queshens Eac:h questmn carries, 12 marks.)
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ristic fun-:tlen
?gmd only 1f the distribution function

(4x4=16)

b)-Prove that almest sure eenvergenee mE@s convergence in probability.

State and prove a necessary and suﬂmlent condition for weak law of large

numbers 1o hold.

(4x12=48)



