

K23U 0514

Reg. No. :

Name :

VI Semester B.Sc. Degree (CBCSS – OBE – Regular/Supplementary/ Improvement) Examination, April 2023 (2019 and 2020 Admissions) CORE COURSE IN MATHEMATICS 6B11 MAT : Complex Analysis

Time : 3 Hours

Max. Marks: 48

PART - A

Answer any 4 questions. Each question carries one mark :

- 1. Check whether u = e^xsin2y is harmonic or not.
- 2. Evaluate $\int_{1}^{\pi i} \cos z \, dz$.
- 3. State Cauchy's integral theorem.
- 4. Discuss the convergence of $e^z = \sum_{n=1}^{\infty} \frac{z^n}{n!}$
- 5. Write the Maclaurin series for sinz.

PART – B

Answer any 8 questions. Each question carries two marks :

- 6. Find real part and imaginary part of $f(z) = \frac{1}{1-z}$ at 1-i.
- 7. Check whether $f(z) = \cos x \cosh y i \sin x \sinh y$ is analytic.
- 8. Define an entire function and write example of an entire function.
- 9. Evaluate $\int_{C} \operatorname{Rez} dz$, where C is the shortest path from 1 + i to 3 + 3i.

K23U 0514

colled

- 10. Determine $\int_{c} \frac{1}{2z-1} dz$, where C is the unit circle in the counter clock wise direction.
- 11. Prove that if a series $z_1 + z_2 + \dots$ converges, then $\lim_{n \to \infty} z_n = 0$.
- 12. State root test for the convergence of a series.
- 13. Check the convergence of $\sum_{n=0}^{\infty} \frac{i^n}{n^2 i}$
- 14. State Laurent's theorem. 15. Evaluate $\oint_{C} \frac{1}{(z-1)(z-3)} dz$, C: $|z| = \frac{3}{2}$, in the counter clock wise direction.
- 16. Define zeros and singularities of a function f(z) and write example for each.

PART-C

Answer any four questions. Each question carries four marks :

- 17. Show that $f(z) = \overline{z}$ is nowhere differentiable.
- 18. Prove that $|\cos z|^2 = \cos^2 x + \sinh^2 y$.
- 19. State and prove Cauchy's integral formula.
- 20. State and prove Morera's theorem.
- 21. Define radius of convergence of a power series also find the radius of convergence of $\sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2} (z-3i)^n$.

22. Find all Taylor and Laurent series of $f(z) = \frac{-2z+3}{z^2-3z+2}$ with center 0.

23. Find the residues at singular points of $\frac{\sin z}{z^3 - z}$.

K23U 0514

PART - D

Answer any two questions. Each question carries six marks :

- 24. a) Find the value of z when Inz = 4 3i.
 - b) Express i in the form of a + ib.
 - c) Write $e^{2+3\pi i}$ in the form of u + iv also find $|e^{2+3\pi i}|$.
- 25. Evaluate using Cauchy's integral formula.
 - a) $\oint \frac{e^z}{z^n} dz$, where C is the unit circle in the counter clock wise direction.
 - b) $\oint \frac{z+2}{z-2} dz$, C: |z-1| = 2, in the counter clock wise direction.
- 26. a) Find Maclaurin series for $f(z) = \sin(2z^2)$.
 - →auchy's residue theorem. →auchy's residue theorem. →auchy's c = 1, also find radiu →auchy's residue theorem. →auchy's c = 1, c = 2, in the counter clock wise direction. $\frac{1}{1}$ with center $z_0 = i$, also find radius of
- 27. a) State and prove Cauchy's residue theorem.