

III Semester M.Sc. Degree (CBSS – Reg./Suppl./Imp.) Examination, October 2021 (2018 Admission Onwards) MATHEMATICS MAT 3E01 : Graph Theory

LIBRARY

Time : 3 Hours

Max. Marks: 80

Instructions : 1) Answer any 4 questions from Part – A. Each question carries four marks.

> Answer any 4 questions from Part – B without omitting any Unit. Each question carries 16 marks.

PART – A

- I. Answer any 4 questions. Each question carries 4 marks.
 - Let (S₁, S₂, ..., S_n) be any partition of the set of integers {1, 2, ..., r_n}, then prove that for some i, Si contains three integers x, y and z satisfying the equation x + y = z.
 - Let G be a k-critical graph with a 2-vertex cut {u, v}. Then prove that d(u) + d(v) ≥ 3k - 5.
 - 3) When do you say that a graph G is embeddable on a surface S? Further prove that a graph G is embeddable in the plane if and only if it is embeddable on the sphere.
 - If two bridges overlap, then prove that either they are skew or else they are equivalent 3-bridges.
 - 5) Prove that a tree has atmost one perfect matching.
 - 6) Prove that a simple graph G is n-connected if and only if given any pair of distinct vertices u and v of G, there are at least n-internally disjoint paths from u to v.

K21P 1072

PART – B Unit – I

-2-

II. a) If G is simple and contains no k_{m+1} , then prove that $\sum (G) \le \sum (T_{m,v})$, $T_{m,v}$ denote the complete m partite graph on v vertices in which all parts are as equal in size as possible. Also prove that $\sum (G) = \sum (T_{m,v})$ only if $G \cong T_{m,v}$.

b) Define a k-critical graph and if G is a k-critical graph, then show that $\delta \ge k-1$. 8

- III. Define the Ramsey number r(k, l) and find an upper bound and lower bound for the Ramsey number r(k, k).
- IV. a) If G is simple, then prove that $\pi_k(G) = \pi_k(G-e) \pi_k(G \cdot e)$ for any edge e of G.
 - b) For any graph G, prove that $\pi_k(G)$ is a polynomial in k of degree v with integer coefficients, leading term k^v and constant term zero. Further prove that the coefficients of $\pi_k(G)$ alternate in sign.

Unit – II

- V. a) Let G be a connected graph that is not an odd cycle. Then prove that G has a 2-edge colouring in which both colours are represented at each vertex of degree at least two.
 - b) If G is bipartite and if $p \ge \Delta$, then prove that there exist p-disjoint matchings M_1, M_2, \dots, M_p of G such that $E = M_1 \cup M_2 \cup \dots \cup M_p$. Also show that any two matchings M, and M, differ in size by at most one.
- VI. a) Describe a good algorithm for finding a proper ∆-edge colouring of a bipartite graph G.
 - b). If G is simple, then prove that either $X'(G) = \Delta$ or $X'(G) = \Delta + 1$. 10
- VII. a) Show that K_s can be embedded on the torus and K₃₃ on the Mobius band. 4
 - b) State and prove Euler's formula for planar graphs and show that $K_{3,3}$ is not planar. Also check the planarity of K_{33} e. 12

8

8

6

6

16

8

Unit – III

-3-

VIII. a)	Let G be a bipartite graph with bipartition (X, Y). Then prove that G contain a matching that saturates every vertex in X if and only if	
	$ N(S) \ge S $ for all $S \le X$.	10
b)	State and prove the marriage theorem.	6
IX.a)	Give the Kuhn-Munkres algorithm to find an optimal matching in a weighted complete bipartite graph. Also draw its flow chart.	10
b)	Let <i>l</i> be a feasible vertex labelling of G. If G_i contains a perfect matching M*, then M* is an optimal matching of G.	6
Х. а)	Let u and v be two non-adjacent vertices of a graph G. Then prove that the maximum number of internally disjoint u-v paths in G equals the minimum	
	number of vertices in a u-v separating set.	8
b)	Let G be a simple graph, then prove that $K(G) \leq K_{e}(G) \leq \delta(G)$.	8