

K17P 1597

Reg. No. :

Name:....

First Semester M.Sc. Degree (Regular) Examination, October 2017 (2017 Admission) MATHEMATICS MAT1 C04 : Basic Topology

Time: 3 Hours

Max. Marks: 80

Instructions : Answer any four questions from Part – A. Each question carries 4 marks. Answer any four questions from Part – B without omitting any Unit.

Each question carries 16 marks.

PART-A

- Let d be the discrete metric on a nonempty set X. Find the topology on X generated by d.
- 2. When is a metric space (X, d) said to be bounded ? Does boundedness depend on the metric ? Justify your answer.
- 4. For each $n \in \mathbb{N}$, Let $X_n = \{1, 2\}$ and let \Im_n be the discrete topology on X_n . Let \Im be the product topology and \mathfrak{N} be the box topology on $\prod X_n$. Show that $\Im \neq \mathfrak{N}$.
- 5. Let \Im be the usual topology on IR. Show that (IR, \Im) is connected.
- 6. Define a totally disconnected space. Consider IR with usual topology. Is Q with subspace topology totally disconnected ? Why ?

PART-B

Unit - I

- 7. a) Let X be an infinite set and $\Im = \{U \in \mathcal{P}(X) : U = \phi \text{ or } X U \text{ is countable}\}.$ Prove that \Im is a topology on X. In case X is finite what is \Im ?
 - b) Let X = {1, 2, 3}. Determine whether B = {{1, 2}, {2, 3}} is a basis for a topology on X.
 - c) State and prove a necessary and sufficient condition for a subset of *P*(X) to be a basis for a topology on X.

-2-

- 8. a) Define a separable space. Give an example of a topological space which is not separable.
 - b) Prove that every separable metric space is second countable.
 - c) State and prove Baire category theorem.
- 9. a) Let (X, ℑ) be a first countable space, let ⟨x_n⟩ be a sequence in X and let x ∈ X. Prove that ⟨x_n⟩ clusters at x if and only if there is a subsequence of ⟨x_n⟩ that converges to x.
 - b) Let (X, ℑ) and (Y, 𝒜) be topological spaces. Prove that f: X → Y is continuous if and only if C is a closed subset of (Y, 𝒜), then f⁻¹(C) is a closed subset of (X, ℑ).
 - c) Let (X, \Im) be a topological space and (Y, d) be a metric space. Let for each $n \in \mathbb{N}$, $f_n : X \to Y$ be a continuous function such that $\langle f_n \rangle$ coverages uniformly to a function $f : X \to Y$, then prove that f is continuous.

Unit – II

- 10. a) Let A be a subset of a topological space (X, \Im). Define the subspace topology \Im_A and show that \Im_A is indeed a topology on A.
 - b) Give an example of a topological space (X, \Im) , a subspace (A, \Im_A) of (X, \Im) and an open set in (A, \Im_A) that is not open in (X, \Im) .
 - c) Define an embedding and show that the function $f : IR. \rightarrow IR.^2$ defined by f(x) = (x, 0), for each $x \in IR$ is an embedding of IR in IR², then IR and IR² with their respective usual topologies.
- 11. a) Let (X₁, ℑ₁) and (X₂, ℑ₂) be topological spaces and let (X₁ × X₂, ℑ) be the product space. Prove that the projections π_i : X₁ × X₂ → X_i (i = 1, 2) are continuous. Also prove that the product topology is the smallest topology for which both projections are continuous.
 - b) Define the product space of a family of topological spaces {(X_α, ℑ_α) : α ∈ Λ}.
 Prove that the collection of all sets of the form ∏U_α where U_α ∈ ℑ_α for each α ∈ Λ and U_α = X_α for all but a finite number of members of Λ is a basis for the product topology ∏X_α.
 - c) Prove that the product space of two Hansdorff spaces is a Hansdorff space.

- 12. a) Let (C, \mathfrak{I}_c) and (D, \mathfrak{N}_p) be subspaces of the topological spaces (X, \mathfrak{I}) and (Y, \mathfrak{N}) respectively. Prove that the product topology on $C \times D$ determined by \mathfrak{I}_c and \mathfrak{N}_p is same as the subspace topology on $C \times D$ determined by the product topology on $X \times Y$.
 - b) Let $\{(X_{\alpha}, \exists_{\alpha}) : \alpha \in \Lambda\}$ be an indexed family of topological spaces and let

 $X=\prod_{\alpha\in\Lambda}X_{\alpha}$. Prove that the product space (X, $\, {\mathbb T}\,)$ is second countable if and

only if $(X_{\alpha}, \Im_{\alpha})$ is second countable for all $\alpha \in \Lambda$ and \Im_{α} is the trivial topology for all but a countable number of α .

Unit – III

- 13. a) Prove that a topological space (X, I) is connected if and only if no nonempty proper subset of X is both open and closed.
 - b) Define fixed point property. Prove that the closed unit interval [0, 1] has the fixed point property.
 - c) Let I be the lower limit topology on IR. Is (IR, I) connected ? Prove your answer.
- 14. a) Let $\{(X_{\alpha}, \mathfrak{I}_{\alpha}) : \alpha \in \Lambda\}$ be a collection of topological spaces and suppose that

for each $\alpha \in \Lambda$, $X_{\alpha} \neq \phi$. Let $X = \prod_{\alpha \in \Lambda} X_{\alpha}$. Prove that the product space (X, \Im)

is connected if and only if for each, $\alpha \in \Lambda$, $(X_{\alpha}, \mathfrak{I}_{\alpha})$ is connected.

- b) Prove that the fixed point property is a topological invariant.
- 15. a) Define a pathwise connected space. Show that the topologist's sine curve is not pathwise connected.
 - b) Define a locally pathwise connected space. Prove that a topological space is locally pathwise connected if and only if each path component of each open set is open.