

K17P 1596

Reg. No. :

Name :

First Semester M.Sc. Degree (Regular) Examination, October 2017 MATHEMATICS (2017 Admission) MAT1C03 : Real Analysis

Time : 3 Hours

Max. Marks : 80

Instructions : 1) Answer any four questions from Part – A.

- 2) Each question carries 4 marks.
- 3) Answer any four questions from Part B without omitting any Unit.
- 4) Each question carries 16 marks.

PART-A

- 1. Let X be an infinite set. For $p, q \in X$, define d(p, q) = 1 if $p \neq q$, d(p, q) = 0 if p = q. Show that d is a metric on X.
- Let I = [0, 1] be the closed unit interval. Suppose f is a continuous mapping of I into I. Prove that f(x) = x for at least one x ∈ I.
- 3. Let f be defined for all real x and suppose that $|f(x) f(y)| \le (x \dot{y})^2$ for all real x and y. Prove that f is constant.
- 4. Suppose α increases on [a, b], $a \le x_0 \le b$, α is continuous at x_0 , $f(x_0) = 1$ and f(x) = 0 if $x \ne x_0$. Prove that $f \in R(\alpha)$ and $\int f d\alpha = 0$.
- 5. If $f \in R(\alpha)$ on [a, b], then prove that $|f| \in R(\alpha)$ and $\left| \int_{a}^{b} f d\alpha \right| \leq \int_{a}^{b} |f| d\alpha$.
- 6. Determine whether f defined by $f(x) = x^2 \sin(\frac{1}{x})$, if $x \neq 0$, f(0) = 0 is of bounded variation on [0, 1].

K17P 1596

PART-B

Unit – I

- Let A be the set of all sequences whose elements are the digits 0 and 1. Prove that A is uncountable.
 - b) Let $\{E_n\}$, n = 1, 2, 3, ..., be a sequence of countable sets. Prove that $\bigcup_{n=1}^{n} E_n$ is countable.
 - c) Let X be a metric space. Define a neighborhood of a point p ∈ X and prove that every neighborhood is an open set.
- 8. a) Prove that every k-cell is compact.
 - b) Let E be a set in IR^k. If every infinite subset of E has a limit point in E, then prove that E is closed and bounded.
- a) Let f be a continuous mapping of a compact metric space X into a metric space Y. Prove that f is uniformly continuous on X.
 - b) Define (i) discontinuity of the second kind (ii) monotonic function and prove that monotonic functions have no discontinuities of the second kind.

Unit – II

- a) State and prove the generalized mean value theorem. Also deduce the mean value theorem.
 - b) Show that the mean value theorem fails to hold for complex valued functions.
 - c) Suppose f'(x), g'(x) exist and $g'(x) \neq 0$ and f(x) = g(x) = 0. Prove that $\lim_{t \to x} \frac{f(t)}{g(t)} = \frac{f'(x)}{g'(x)}.$
- 11. a) Let \overline{f} be a continuous mapping of [a, b] into IR^k and \overline{f} is differentiable in (a, b). Prove that there exists $x \in (a, b)$ such that $|\overline{f}(b) - \overline{f}(a)| \le (b - a) |\overline{f}'(x)|$.
 - b) Prove that $f \in R(\alpha)$ on [a, b] if and only if for every $\varepsilon > 0$, there exists a partition P such that $U(P, f, \alpha) L(P, f, \alpha) < \varepsilon$.

- 12. a) If f is monotonic on [a, b] and if α is continuous on [a, b], prove that $f \in R(\alpha)$.
 - b) Let α be increasing monotonically and $\alpha' \in R$ on [a, b] and f be a bounded real function on [a, b]. Prove that $f \in R(\alpha)$ if and only if $f\alpha' \in R$ on [a, b] and

that
$$\int_{a}^{b} f d\alpha = \int_{a}^{b} f(x) \alpha'(x) dx$$

Unit - III

13. a) Let f∈R on [a, b]. For a ≤ x ≤ b, define F(x) = ∫_a² f(t) dt. Prove that F is continuous on [a, b]. Further if f is continuous at x₀ ∈ [a, b], prove that F is differentiable at x₀ and F'(x₀) = f(x₀).

- b) Define the Riemann-Stieltjes integral of a mapping $\overline{f} = (f_1, ..., f_k)$ of [a, b] into \mathbb{R}^k . If \overline{f} maps [a, b] into \mathbb{R}^k and if $\overline{f} \in \mathbb{R}(\alpha)$ for some monotonically increasing function α on [a, b], prove that $|f| \in \mathbb{R}(\alpha)$ and $\left| \int_{\alpha}^{b} \overline{f} \, d\alpha \right| \leq \int_{\alpha}^{b} |\overline{f}| \, d\alpha$.
- 14. a) When is a function f said to be a bounded variation on [a, b]? Also define the total variation of f on [a, b].
 - b) If f is of bounded variation on [a, b], prove that f is bounded on [a, b].
 - c) Let f be of bounded variation on [a, b] and let c ∈ (a, b). Prove that f is of bounded variation on [a, c] and on [c, b] and V_f(a, b) = V_f(a, c) + V_f(c, b).
- 15. a) Let f be a bounded variation on [a, b]. Define V on [a, b] by $V(x) = V_f(a, x)$ if $a < x \le b$ and V(a) = 0. Prove that
 - i) V is an increasing function on [a, b]
 - . ii) V f is an increasing function on [a, b].
 - b) Let f be of bounded variation on [a, b]. If x ∈ (a, b], let V(x) = V_f(a, x) and put V(a) = 0. Prove that every point of continuity of f is also a point of continuity of V. Further, prove that the converse is also true.