

K18P 1429

Reg. No.	:	
----------	---	--

Name :

First Semester M.Sc. Degree (Reg./Suppl./Imp.) Examination, October 2018 (2017 Admn. Onwards) MATHEMATICS

MAT 1C01 : Basic Abstract Algebra

Time : 3 Hours

Max. Marks: 80

PART - A

Answer four questions from this part. Each question carries 4 marks.

1. Prove that direct product of abelian groups is abelian.

2. Prove that a group of order 16 is not simple.

- 3. Find the product of the polynomials f(x) = 4x 5 and $g(x) = 2x^2 4x + 2$ in $\mathbb{Z}_8[x]$.
- 4. Let $\phi: \mathbb{Z}_{18} \to \mathbb{Z}_{12}$ be the homomorphism where $\phi(1) = 10$. Find the kernel of ϕ .
- 5. Define prime ideal. Give an example of a prime ideal which is not maximal.
- 6. Give an example to show that a factor ring of an integral domain may have divisors of zero.

PART - B

Answer four questions from this part without omitting any Unit. Each question carries 16 marks.

Unit – I

- 7. a) Prove that if the group $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic and is isomorphic to \mathbb{Z}_{mn} if and only if m and n are relatively prime.
 - b) Let X be a G-set and let $x \in X$. Then prove that $|Gx| = (G : G_x)$.
- 8. a) Let $G = S_3$ be the group of all permutations of the set $X = \{1, 2, 3\}$.
 - i) Then prove that X is a G-set with respect to the operation $\sigma x = \sigma(x)$.
 - ii) Find the subgroup G₁.
 - iii) Find X_o where $\rho = (1,2)$.
 - b) State and prove Cauchy's theorem.

K18P 1429

- 9. a) Prove that every group of prime power order is solvable.
 - b) Prove that no group of order 36 is simple.

Unit – II

- 10. a) Let D is an integral domain and S = {(a, b)|a, b ∈ D, b ≠ 0}. Then show that the relation ~ defined by (a, b) ~ (c, d) if and only if ad = bc is an equivalence relation.
 - b) If N is a normal subgroup of G and if H is any subgroup of G, then prove that H ∨ N = HN = NH. Further prove that, if H is normal subgroup of G, then HN is a normal subgroup of G.
- 11. a) Define isomorphic normal series of a group G. Given an example.
 - b) Let H and K be subgroups of a group G and let H* and K* be normal subgroup of H and K, respectively. TheN prove that H*(H ∩ K*) is a normal subgroup of H*(H ∩ K).
- 12. a) If G has a composition series and N is a proper normal subgroup of G, then prove that G has composition series containing N.
 - b) Prove that every finitely generated abelian group is isomorphic to a group of the form Z_{m1}×Z_{m2}×...×Z_{m1}×Z×...×Z where m_i divides m_{i+1} for i = 1,, r − 1.

Unit – III

- 13. a) State and prove division algorithm for a polynomial ring F[x] over a filed F.
 - b) Show that for p a prime, the polynomial $x^p + a$ in \mathbb{Z}_p [x] is irreducible for any $a \in \mathbb{Z}_p$.
- 14. a) Find all ideals N of \mathbb{Z}_{12} . In each case compute \mathbb{Z}_{12}/N .
 - - Prove that

 (N) is an ideal of
 (R).
 - ii) Prove that $\phi^{-1}(N')$ is an ideal of R.
- 15. a) Prove that every maximal ideal in commutative ring with unity is a prime ideal. What about the converse ? Justify your answer.
 - b) If F is a field, prove that every ideal in F[x] is principal ideal.