

K18P 1431

Reg. No. :

Name :

First Semester M.Sc. Degree (Reg./Suppl./Imp.) Examination, October 2018 (2017 Admn. Onwards) MATHEMATICS MAT1C03 : Real Analysis

Time : 3 Hours

Max. Marks : 80

PART - A

Answer four questions from this Part. Each question carries 4 marks.

- 1. Prove that set of all sequences whose elements are digits 0 and 1 is uncountable.
- 2. Discuss the continuity of the function $f(x) = \begin{cases} x & \text{if } x \text{ is irrational} \\ 0 & \text{if } x \text{ is rational} \end{cases}$
- 3. Evaluate $\lim_{x \to 0} \left(\frac{1}{\sin x} \frac{1}{x} \right)$.
- 4. If $f \in R(\alpha)$ on [a, b], prove that $|f| \in R(\alpha)$ on [a, b].
- 5. Let $f \in R$ on [a, b] and for $a \le x \le b$, let $F(x) = \int_{a}^{x} f(t) dt$. Prove that F is continuous on [a, b].
- 6. Examine whether the function given by $f(x) = \begin{cases} \sqrt{x} \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$ is of bounded variation on [0, 1].

Answer **any four** questions from this Part without omitting any Unit. Each question carries **16** marks.

- 7. a) Define convex set. Prove that closed balls in \mathbb{R}^k are convex.
 - b) Prove that compact subsets of metric space are closed.

P.T.O.

- 8. a) Define perfect set. Show that Cantor set is perfect.
 - b) Give an example of continuous and unbounded function on (0, 1) and continuous and bounded on (0, 1).
- a) Let X = [0, 2π) and Y is a unit circle centred at the origin. Let f : X → Y be defined by f(t) = (cost, sint). Is f continuous ? Does f⁻¹ exist ? If it exists, is it continuous ? Justify your answer.
 - b) Let f be monotonic on (a, b). Show that the set of all points of (a, b) at which f is discontinuous is atmost countable.

UNIT - II

10. a) Let f be continuous on [a, b], f' (x) exists at some point x∈ [a, b], g is defined on the interval I which contains the range of f and g is differentiable at the point f(x). If h(t) = g(f(t)), a ≤ t ≤ b. Prove that h is differentiable at x. Prove that h is differentiable at x and h' (x) = g' (f(x)) f' (x).

b) Check the continuity of f(x), if f(x) =
$$\begin{cases} x^2 \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

11. a) State and prove generalised mean value theorem.

b) If $f:[0, 1] \to \mathbb{R}$ defined by $f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$ find $\int_{a}^{b} f dx$ and $\int_{a}^{\overline{b}} f dx$.

- 12. a) Suppose $f \in R(\alpha)$ on [a, b], $m \le f \le M$, ϕ is continuous on [m, M] and $h(x) = \phi(f(x))$ on [a, b]. Prove that $h \in R(\alpha)$ on [a, b].
 - b) Suppose α is increases monotonically α' ∈ R on [a, b] and f is bounded real function on [a, b]. Show that f ∈ R(α) on [a, b] if and only if f α' ∈ R.

UNIT – III

-3-

- 13. a) Let $f : [a, b] \to \mathbb{R}^k$ and if $f \in R(\alpha)$ for some monotonically increasing function α on [a, b], prove that $|f| \in R(\alpha)$ on [a, b] and $\left| \int_a^b f d\alpha \right| \le \int_a^b |f| d\alpha$.
 - b) State and prove fundamental theorem of integral calculus.
- 14. a) Let f be monotonic on [a, b]. Show that the set of discontinuities of f is countable.
 - b) Let f be of bounded variation on [a, b] and c ∈ (a.b). Prove that f is of bounded variation on [a, c], on [c, b] and V_f(a.b) = V_f(a.c) + V_f(c.b).
- 15. a) If f is continuous on [a, b] and f' exist and is bounded in (a, b). Prove that f is of bounded variation on [a, b].

b) Find the length of the curve $f(t) = e^{2\pi i t}$, $t \in [0, 2]$.