0044547

K19P 1519

Reg. No. : Name :

I Semester M.Sc. Degree (CBSS-Reg./Sup./Imp.) Examination, October - 2019 (2017 Admn. Onwards) MATHEMATICS MAT1C04 : BASIC TOPOLOGY

Time : 3 Hours

Max. Marks: 80

Instructions:

Answer any **Four** questions from Part-A. Each question carries **4** marks Answer any **Four** questions from Part-B without omitting any unit. Each question carries **16** marks

PART-A

- **1.** Give an example of a set X and topologies T_1 and T_2 on X such that $T_1 \cup T_2$ is not a topology on **X**.
- Consider ℝ with the usual metric and Q with the subspace metric. Is, Q of the first category? Why?
- 3. Prove that the first countability axiom is a hereditary property.
- Let υ be the usual topology on ℝ. Describe the weak topology on ℝ induced by the function i: ℝ → (ℝ, υ) defined by i(x) = x.
- 5. Prove that the closed interval [0, 1] has the fixed point property.
- Prove that continuous image of a pathwise connected space is Path wise connected.

PART-B

Unit-I

7. a) Define a subbasis for a topology on a set X. Illustrate with an example.

K19P 1519

- b) Let X be a set and ζ be a collection of subsets of X such that X = U{s : s ∈ ζ}. Prove that there is a unique topology T on X such that ζ is a subbasis for T.
- c) Define
 - i) First countable space
 - ii) Second countable space
 - iii) Prove that every second countable space is first countable. Is the converse true? Justify your answer
- 8. a) Let A be a subset of a topological space (X, T) and let $x \in X$. Prove that $x \in \overline{A}$ if and only if every neighborhood of x has a non empty intersection with A. Also prove that $\overline{A} = A \cup A'$.
 - b) Let A,B be subsets of a topological space (X,T) prove that int(A)∪int(B)⊆ int(A ∪ B) and show by an example that equality need not hold.
 - c) Let X = $\{1,2,3,4,5\}$ and T = $\{\phi, \{1\}, \{3,4\}, \{1,3,4\}, \{2,3,4,5\}, X\}$. Find the closed subsets of with respect to T.
- 9. a) Prove that every convergent sequence in a metric space is a Cauchy sequence.
 - b) Let (X,d) be a complete metric space and let A be subset of X with the subspace metric ρ. Prove that (A, ρ) is complete if and only if A is a closed subset of X.
 - c) Let (x,T) and (y,v) be topological spaces. Define a continuous function $f: X \to Y$. If (X,T) is first countable and for each $x \in X$ and each sequence $\langle x_n \rangle$ in x such that $x_n \to x$, the sequence $\langle f(x_n) \rangle$ converges to f(x), then prove that f is continuous.

Unit-II

- **10.** a) Let (A, T_A) be a subspace of a topological space (X, T). Prove that a subset C of A is closed in (A, T_A) if and only if there is a closed subset D of (X, T) such that $C = A \cap D$.
 - b) Prove or disprove : Separability is a hereditary property.
 - c) Define an embedding one topological space in another topological space and show that \mathbb{R} with usual topology can be embedded in \mathbb{R}^2 with the usual topology
- 11. a) Define the product space of two topological spaces (X, T_1) and (Y, T_2) . Let (X_1, d_1) and (X_2, d_2) be metric spaces, for each i = 1,2, Let T_i be the topology on X_i generated by d_i. Prove that the product topology on $X = X_1 \times X_2$ is same as the topology on X generated by the product metric.
 - b) Let $(X,T),(Y_1,\upsilon_1)$ and (Y_2,υ_2) be topological spaces and let $f_1: X \to Y_1$ and $f_2: X \to Y_2$ be functions, and define $f: X \to Y_1 \times Y_2$ by $f(x) = (f_1(x), f_2(x))$. Prove that f is continuous if and only if f_1 and f_2 are continuous.
- **12.** a) Let $\{(X_{\alpha}, T_{\alpha}) : \alpha \in \wedge\}^2$ be an indexed family of topological spaces and for each α in \wedge let $(A_{\alpha}, T_{A_{\alpha}})$ be a subspace of (X_{α}, T_{α}) . Prove that the product topology on $\prod_{\alpha \in \wedge} A_{\alpha}$ is same as the subspace topology on $\prod_{\alpha \in \wedge} A_{\alpha}$ determined by the product topology on $\prod_{\alpha \in \wedge} X_{\alpha}$.
 - b) Let $\{(X_{\alpha}, T_{\alpha}) : \alpha \in \land\}$ be a family of topological spaces and let $X = \prod_{\alpha \in \land} X_{\alpha}$. Prove that the product space (X, T) is second countable if and only if (X_{α}, T_{α}) is second countable for all $\alpha \in \land$ and T_{α} is the trivial topology for all but a countable number of α .

K19P 1519

Unit-III

- **13.** a) Let (X,T) be a topological space and let $A \subseteq X$. Prove that the following conditions are equivalent.
 - i) The subspace (A, T_A) is connected.
 - ii) The set A cannot be expressed as the union of two non empty sets that are separated in X.
 - iii) There do not exist $U, V \in T$ such that $U \cap A \neq \phi$, $V \cap A = \phi, U \cap V \cap A = \phi$ and $A \subset U \cup V$.
 - b) Let T be the usual topology on $\mathbb R$. Prove that $(\mathbb R, \mathcal T)$ is connected.
- 14. a) Define a simple chain in a topological space (X,T) and a covering

of X. Let (X,T) be a connected space, let O be an open cover of X and let a,b be distinct points of X. Prove that there is a simple chain consisting of members of O that connects a and b.

- b) Define a pathwise connected space and show that the topologist's sine curve is not pathwise connected.
- 15. a) Define a locally connected space. Prove that a topological space is locally connected if and only if each component of each open set is open.
 - b) When is a topological space said to be
 - i) Totally disconnected
 - ii) 0-dimensional
 - iii) a T_o- Space?
 - c) Prove that every 0-dimensional T_{∞} Space is totally disconnected.