

0045017

K19P 1520

Reg. No. :
Name :

I Semester M.Sc. Degree (CBSS - Reg./Suppl./Imp.) Examination, October - 2019 (2017 Admission onwards) MATHEMATICS MAT1C05:DIFFERENTIAL EQUATIONS

Time: 3 Hours

Max. Marks : 80

Instructions: Answer any Four questions from part A. Each question carries 4 marks. Answer any Four questions from part B without omitting any unit . Each question carries 16 marks.

PART-A

- 1. Find a power series solution in the form $\sum a_n x^n$ for the differential equation y' = 2xy. Verify your solution by solving the equation directly.
- 2. Define F(a,b,c,x) and show that $\sin^{-1} x = xF(\frac{1}{2},\frac{1}{2},\frac{3}{2},x^2)$.
- State Rodrigues' formula for Legendre polynomial, use it to compute P₀(x),P₁(x) and P₂(x).
- 4. Show that $x=e^{4t}$, $y=e^{4t}$ and $x=e^{-2t}$, $y=-e^{-2t}$ are solutions of the system $\frac{dx}{dt} = x + 3y$, $\frac{dy}{dt} = 3x + y$ and that these solutions are linearly independent on every closed interval.
- 5. Explain how to reduce the differential equation y'' + P(x)y' + Q(x)y = 0 to the normal form.
- Starting with y₀(x)=1 apply Picard's method to find y₁(x) and y₂(x) for the initial value problem y' = y², y(0)=1.

K19P 1520

PART-B UNIT-I

- 7. a) Let x_0 be an ordinary point of y'' + P(x)y' + Q(x)y = 0 and a_0 and a_1 are arbitrary constants. Prove that there exists a unique function analytic at 0, which is a solution of the differential equation in a neighborhood of 0 satisfying the initial conditions $y(0)=a_0$ and $y'(0) = a_1$.
 - b) Find the general solution of y'' + xy = 0 about the ordinary point x=0.
- 8. a) Verify that origin is a regular singular point of the equation 4xy'' + 2y' + y = 0. Also find two independent Frobenius series solutions.
 - b) Find two independent Frobenius series solutions of $xy'' y' + 4x^3y = 0$.
- a) Define hypergeometric series and derive this series as a solution of Gauss' hypergeometric equation.
 - b) Verify that the Gauss' hypergeometric equation has $x = \infty$ as a regular singular point with exponents a and b.

UNIT-II

- **10.** a) Derive the recursion formula for Legendre polynomials $(n+1)P_{n+1}(x)=(2n+1)x P_n(x)-nP_{n-1}(x)$.
 - b) Establish the orthogonal property of Legendre polynomials

$$\int_{-1}^{1} P_{m}(x) P_{n}(x) = \begin{cases} 0 & \text{if } m \neq n \\ \frac{2}{2n+1} & \text{if } m = n \end{cases}$$

- c) Find the first three terms of the Legendre series of $f(x)=e^x$.
- 11. a) Show that $\frac{d}{dx}[J_0(x)] = -J_1(x)$. Deduce that between any two positive zeros of $J_0(x)$ there is a zero of $J_1(x)$.

b) Prove that $\frac{d}{dx} [x^p J_p(x)] = x^p J_{p-1}(x)$ and $\frac{d}{dx} [x^{-p} J_p(x)] = -x^{-p} J_{p+1}(x)$. Using these derive the recurrence formula $\frac{2p}{x} J_p(x) = J_{p-1}(x) + J_{p+1}(x)$.

12. a) If the two solutions $x=x_1(t)$, $y=y_1(t)$ and $x=x_2(t)$, $y=y_2(t)$ of the system $\frac{dx}{dt} = a_1(t)x + b_1(t)y$, $\frac{dy}{dt} = a_2(t)x + b_2(t)y$ have a Wronskian that does not vanish on [a,b], then prove that $x=c_1x_1(t)+c_2x_2(t)$, $y=c_1y_1(t)+c_2y_2(t)$ is the general solution of the system on [a,b] for any constants c_1 and c_2 .

b) Find the general solution of the system $\frac{dx}{dt} = 3x - 4y$, $\frac{dy}{dt} = x - y$.

UNIT-III

- 13. a) State and prove the sturm separation theorem.
 - b) Let u(x) be a nontrivial solution of u'' + q(x)u = 0, where q(x)>0 for all x>0. If $\int_{1}^{\infty} q(x)dx = \infty$, prove that u(x) has infinitely many zeros on the positive x-axis.
- 14. Let f(x,y) and $\frac{\partial t}{\partial y}$ be continuous functions of x and y on a closed rectangle R with sides parallel to the axes. If (x_0, y_0) is any interior point of R, prove that there is a number h with the property that the initial value problem y' = f(x, y), $y(x_0) = y_0$ has a unique solution on the interval $|x - x_0| \le h$.
- 15. a) Show that $f(x,y)=xy^2$.
 - i) Satisfies a Lipschitz condition on any rectangle $a \le x \le b$ and $c \le y \le d$.
 - ii) does not satisfy a Lipschitz condition on any strip $a \le x \le b$, $-\infty < y < \infty$.
 - b) Solve the system of first order equations by Picard's method.

$$\frac{dy}{dx} = z, y(0) = 1$$
$$\frac{dz}{dx} = -y, z(0) = 0.$$

(3)