K19P 0356

Max, Marks: 80

Reg. N	0.	 	
Name	:	 	

II Semester M.Sc. Degree (Reg./Suppl./Imp.) Examination, April 2019 (2017 Admission Onwards) MATHEMATICS MAT 2C 06 : Advanced Abstract Algebra

Time : 3 Hours

PART - A

Answer any 4 questions. Each question carries 4 marks.

- 1. Distinguish between primes and irreducibles of an integral domain.
- 2. Find all the units in $\mathbb{Z}\left[\sqrt{-5}\right]$.
- 3. Find $\left[\mathbb{Q}\left(\sqrt{2}, \sqrt[4]{2}\right):\mathbb{Q}\right]$.

4. If α and β are constructible real numbers, prove that $\alpha\beta$ is also constructible.

- 5. Find two extensions E and K of \mathbb{Q} such that $[E : \mathbb{Q}] > [K : \mathbb{Q}]$, but $|G(E/\mathbb{Q})| < |G(K/\mathbb{Q})|$.
- 6. Give the lattice diagram of intermediate fields of $\mathbb{Q}(\sqrt{2}, i)$ over \mathbb{Q} . (4×4=16)

PART - B

Answer 4 questions without omitting any Unit. Each question carries 16 marks.

Unit – I

7.	a)	Prove that an ideal in a PID is maximal if and only if p is an irreducible.	8
	b)	Prove or disprove, if F is a field and x, y are indeterminates, then i) F is a PID ii) F[x, y] is a PID.	8
8	a)	Prove that every Euclidean domain is a PID.	6
0.	b)	Prove that any two non zero elements of a PID have a gcd and that any gcd of a and b can be expressed in the form $\lambda a + \mu b$ for $\lambda, \mu \in D$.	7
	C)	Find a gcd of $x^3 - x^2 - 2x + 2$ and $x^3 + x^2 - 2$ in $\mathbb{Q}[x]$.	З т.о.
		size	1.0.

9.	a)	Let P be an odd prime in Z. Prove that $p = a^2 + b^2$ for some integers a and b if and only if $p \equiv 1 \pmod{4}$.	14
	b)	How would you construct a field of 4 elements ?	2
		Unit II	
10.		Prove that if E is a finite extension of F and K is a finite extension of E, then K is a finite extension of F.	10
	b)	Let $F \le E \le K$, be fields such that E is a finite extension of F and K is an algebraic extension of E. Then prove or disprove :	
		i) K is an algebraic extension of Fii) K is a finite extension of F.	6
11	2)	Prove that 'trisecting the angle is impossible'.	6
11.	b)	Prove that if F is a finite field of characteristic p, then the polynomial $x^{p^n} - x$ has p^n distinct zeros in the algebraic closure of F.	6
	C)	Find the number of primitive 8 th roots of unity in GF(9).	4
12.		Define Frobenius automorphism of a finite field. If F is a finite field of characteristic p, prove that the fixed field of its Frobenius automorphism is isomorphic to \mathbb{Z}_p .	6
	b)	State and prove conjugation isomorphism theorem.	10
		Unit – III	
13.	£1.	et E be an algebraic extension of a field F. Let σ be an isomorphism of F onto a eld F'. If $\overline{F'}$ denotes an algebraic closure of F', prove that σ can be extended to n isomorphism τ of E onto a subfield of $\overline{F'}$ such that τ (a) = σ (a) for all a \in F.	1
14		Prove that every field of characteristic 0 is perfect.	5
1-210	b	Prove that if E is a finite extension of F, then {E : F} divides [E : F].	5
	c)	Prove that the field $\mathbb{Q}(\sqrt[4]{2})$ is not a splitting field extension of \mathbb{Q} .	6
15	. а) Let F be a finite field and let E be a finite extension of F of degree n. Prove that K is a normal extension of F, the group G(K/F) = Z _n and G(K/F) is	
		denerated by σ_p^r where $\sigma_p^r(\alpha) = \alpha^{p'}$ for $\alpha \in K$ and $p' = F $.	(4+0)
	b) Obtain the one-to-one correspondence between the intermediate fields of the extension $\mathbb{Z}_2 \leq F$ and the subgroups of $G(F/\mathbb{Z}_2)$ as in the main theorem if $F = \mathbb{Z}_2(\alpha)$, where α is a root of $x^4 + x + 1$ in $\overline{\mathbb{Z}}_2$.	- ., 6

K19P 0356