Reg. No. :

Name :

II Semester M.Sc. Degree (CBSS - Reg./Suppl./imp.) Examination, April 2020 (2017 Admission Onwards) MATHEMATICS MAT 2C06 : Advanced Abstract Algebra

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any 4 questions. Each question carries 4 marks.

- 1. Find all the units in $\mathbb{Z}[i]$.
- 2. Prove that $\sqrt{1+\sqrt{3}}$ is algebraic of degree 4 over \mathbb{Q} .
- 3. State Euclidean algorithm.
- 4. Show algebraically that it is possible to construct an angle of 30°.
- 5. Find the splitting field of $x^3 2$ over \mathbb{Q} .
- 6. Describe the group of the polynomial $(x^3 1) \in \mathbb{Q}$ [x] over \mathbb{Q} .

PART - B

Answer 4 questions without omitting any Unit. Each question carries 16 marks.

Unit - I

7.	a)	State and prove Gauss's Lemma.	5
		Prove that if D is a UFD, then D[x] is a UFD.	7
		Prove that every Euclidean domain is a PID.	4
8.	a)	Prove that $\mathbb{Z}[i]$ is an Euclidean domain.	8
	b)	Let p be an odd prime in \mathbb{Z} . Prove that $p = a^2 + b^2$ for integers a and b in \mathbb{Z} if and only if $p \equiv 1 \pmod{4}$.	8
9	a)	Let F be a field and let $f(x)$ be a non constant polynomial in F[x]. Prove that	
100	/	there exists an extension field E of F and an $\alpha \in E$ such that f(α) = 0.	13
	b)	Show that $x^3 + x^2 + 1$ is irreducible over \mathbb{Z}_2 .	3
		P.	т.о.

K20P 0346

 $(4 \times 4 = 16)$

K20P 0346

		ALL FOR THE STREET	
10.	a)	If E is a finite extension of a field F and K is a finite extension of E, then prove that K is a finite extension of F and $[K : F] = [K : E] [E:F]$.	11
	b)	Prove that a field is algebraically closed if and only if every non constant polynomial in $F[x]$ factors in $F[x]$ into linear factors.	5
11.	a)	Prove that the set of all constructible real numbers forms a subfield F of the field of real numbers.	10
	b)	Prove that the field GF(p ⁿ) of p ⁿ elements exists for every prime power p ⁿ .	6
12.	a)	Prove that complex zeros of polynomials with real coefficients occur in conjugate pairs.	5
	b)	Let F be a finite field of characteristic p. Prove that the map $\sigma_p:F\to F$ defined by $\sigma_p(a)=a^p$ for $a\in F$ is an automorphism of F. Also prove that	-
		$F_{\{\sigma_p\}} = \mathbb{Z}_{p^*}$	7
	C)	Find primitive 10 th roots of unity in \mathbb{Z}_{11} .	4
		Unit – III	
13.	a)	Prove that a field E, where F $\leq E \leq \overline{F}$ is a splitting field over F if and only if every automorphism of \overline{F} leaving F fixed maps E onto itself and thus induces an automorphism of E leaving F fixed.	12
	b)	If $F \leq E \leq K,$ where K is a finite extension field of the field F, then prove that $\{K:F\} = \{K:E\}\{E:F\}.$	4
14.	a)	Prove that every field of characteristic zero is perfect.	5
	b)	State and prove primitive element theorem.	8
	C)	Find the degree of the splitting field of $x^4 - 1$ in $\mathbb{Q}[x]$ over \mathbb{Q} .	3
15.	a)	State main theorem of Galois theory.	6
	b)	Let K be a finite normal extension of F and let E be an extension of F, where $F \le E \le K \le \overline{F}$. Prove that K is a finite normal extension of E and G(K/E) is precisely the subgroup of G(K/F) consisting of all those automorphisms that leave E fixed. Also prove that two automorphisms σ and τ in G(K/F) induce the same automorphism of E onto a subfield of \overline{F} if and only if they	
	3¥	are in the same left coset of G(K/E) in G(K/F).	10 64)