|         | HI   | IH |   | HH   | IIII | F  |    | ŧi. | H |
|---------|------|----|---|------|------|----|----|-----|---|
| 1444411 | 1111 | ш  | Ш | 1111 | ШЦ   | Ŀ, | 11 | ш   | ш |

Name : .....

| Reg. No | . : |  |
|---------|-----|--|
|---------|-----|--|



# K20P 0348

II Semester M.Sc. Degree (CBSS – Reg./Suppl./Imp.) Examination, April 2020 (2017 Admission Onwards) MATHEMATICS MAT2C08 – Advanced Topology

Time : 3 Hours

Max. Marks: 80

# PART - A

Answer any four questions from this part. Each question carries 4 marks : (4×4=16)

- Give an example, with proper reasoning, of a bounded metric space that is not compact.
- 2. Is a continuous function from a compact metric space to a metric space always uniformly continuous ? Justify your answer.
- 3. Show that regularity is a topological property.
- 4. Is the topological space (X, T) normal, where  $X = \{1, 2, 3, 4\}$  and  $T = \{\phi, \{1\}, \{1, 2\}, \{1, 2, 3\}, X\}$ ? Justify your answer.
- Show that a T<sub>1</sub> space, which can be imbedded as a subspace of I<sup>w</sup>, is a separable metric space.
- 6. Let  $(X_n, d_n)$  be a metric space for each  $n \in \mathbb{N}$  and let  $X = \prod_{n \in \mathbb{N}} X_n$ . Prove that

$$d(x, y) = \sum_{n=1}^{\infty} \frac{d_n(x_n, y_n)}{2^n} \text{ for } x, y \in X \text{ is a metric on } X.$$

## PART - B

Answer any four questions from this part without omitting any unit. Each question carries 16 marks : (4×16=64)

#### Unit – I

- a) Prove that every open cover of a metric space with the Bolzano-Weierstrass property has a Lebesgue number.
  - b) Prove that a metric space is compact if and only if it is complete and totally bounded.

#### K20P 0348

# 

- 8. a) Show that the product of two compact spaces is compact.
  - b) Show that compactness is a topological property.
  - c) Give an example, with proper reasoning, of a compact set that is not closed.
- a) Prove that every closed subspace of a locally compact Hausdorff space is locally compact.
  - b) Let X be a locally compact space. If there is an open continuous function from X onto Y, then show that Y is locally compact.
  - c) Give an example, with proper reasoning of a compact set that is not sequentially compact.

### Unit – II

- a) Give an example, with proper reasoning, of a T, space that is not T<sub>2</sub>.
  - b) Let X be a topological space and Y a Hausdorff space. If f : X→Y is continuous, then prove that {(x₁, x₂)∈ X × X : f (x₁) = f(x₂)} is a closed set.
  - c) Prove that a T<sub>1</sub> space is regular if and only if for each  $p \in X$  and each neighbourhood U of p, there is a neighbourhood V of p such that  $\overline{V} \subseteq U$ .
- 11. a) Let  $\{(X_a, T_a) : a \in \land\}$ : be a family of topological spaces with  $X = \prod_{a \in \land} X_a$ . Prove that (X, T) is regular if and only if  $(X_a, T_a)$  is regular for each  $a \in \land$ .
  - b) Let (X, ≤) be a well-ordered set and let T denote the order topology on X. Prove that (X, T) is a normal space.
- 12. a) Prove that a T<sub>1</sub> space is completely normal if and only if each of its subspace is normal.
  - b) Prove that every regular Lindelof space is normal.

#### Unit – III

- 13. a) State and prove Urysohn's Lemma.
  - b) Prove that the set of dyadic numbers in I is dense in I.
- 14. a) State and prove Tychonoff theorem.
  - b) Prove that, if (X, T) is a T₁, regular and second countable space, then X can be imbedded as a subspace of I<sup>∞</sup>.
  - c) Show that the space I<sup>®</sup> is mertrizable.
- a) For two spaces (X, T). (Y, U), show that the relation defined by f ≃ g if f is homotopic to g is an equivalence relation on C(X, Y).
  - b) Let (X, T) be a topological space and x<sub>0</sub>∈ X. Prove that the operation o defined on π<sub>1</sub>(X, x<sub>0</sub>) by [α] o [β] = [α + β] is associative.