K20P 0349

THE REPORT	111 1 1 11 1 1111	

Reg. No. :

Name :

II Semester M.Sc. Degree (CBSS – Reg./Suppl./Imp.) Examination, April 2020 (2017 Admission Onwards) MATHEMATICS MAT2C09 : Foundations of Complex Analysis

Time : 3 Hours

Max. Marks : 80

PART – A

Answer any four questions. Each question carries 4 marks :

- 1. If $\gamma : [0, 1] \rightarrow \mathbb{C}$ is a closed rectifiable curve and $a \notin \{\gamma\}$, prove that $\frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z-a}$ is an integer.
- 2. State and prove Morera's theorem.
- If f has an essential singularity at z = a, then prove that for every δ > 0, {f[ann(a; 0, δ)]}[−] = C.
- 4. Let f be analytic on an open set containing $\overline{B}(a, R)$ and is one-one in B(a, R).

If $\Omega = f[B(a, R)]$ and γ is the circle |z - a| = R, prove that $f^{-1}(\omega)$ is defined for each ω in Ω .

- 5. If $\{f_n\}$ is a sequence in H(G) and f belongs to C(G, C) such that $f_n \rightarrow f$ then prove that f is analytic and $f_n^{(k)} \rightarrow f^{(k)}$.
- 6. Suppose |z| < 1 and $p \ge 0$. Prove that, $|1 E_p(z)| \le |z|^{p+1}$. (4×4=16)

K20P 0349

PART – B

Answer **any four** questions from this part without omiting **any** Unit. **Each** guestion carries **16** marks.

Unit – I

- a) Let G be a connected open set and let f : G →C be an analytic function. Prove the following are equivalent :
 - i) $f \equiv 0$
 - ii) there is a point a in G such that $f^{(n)}(a) = 0$ for each $n \ge 0$.
 - iii) $\{z \in G : f(z) = 0\}$ has a limit point in G.
 - b) Let γ be a closed rectifiable curve in C. Prove that n(γ, a) is constant for a belonging to a component of C- { γ }.
- 8. a) Suppose f is analytic in B(a, R) and let f(a) = α. If f(z) α has a zero of order m at z = a, prove that there exist ∈ > 0 and δ > 0 such that for |ζ α| < δ the equation f(z) = ζ has exactly m simple roots in B(a, ∈).
 - b) State and prove Cauchy's Theorem-Third Version.
- a) If G is simply connected and f : G→ C is analytic in G, prove that f has a primitive.
 - b) State and prove Goursat's theorem.

Unit – II

- 10. a) State and prove Residue theorem.
 - b) Show that $\int_{0}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$.
- 11. a) Let f be meromorphic in the region G with zeros $z_1,...,z_n$ and poles $p_1,...,p_m$ counted according to multiplicity. If g is analytic in G and γ is a closed curve in G with $\gamma \approx 0$ and not passing through any z_i or p_i , prove that

$$\frac{1}{2\pi i}\int_{\gamma} g \frac{f'}{f} = \sum_{j=1}^{n} g(z_j) n(\gamma; z_j) - \sum_{j=1}^{m} g(p_j) n(\gamma; p_j)$$

- b) State and prove Rouche's theorem.
- c) State and prove maximum modulus theorem (First version).

- 12. a) State and prove Schwarz's Lemma.
 - b) If |a| < 1 prove that the map ϕ_a defined by $\phi_a(z) = \frac{z-a}{1-\overline{a}z}$ is a bijective map from D = {z : |z| < 1} to D. Also prove that ϕ_a maps ∂D to ∂D and $\phi'_a(a) = (1 - |a|^2)^{-1}$.

Unit – III

- 13. a) If G is open in C then prove that there is a sequence {K_n} of compact subsets of G such that $G = \bigcup_{n=1}^{\infty} K_n K_n \subset int K_{n+1}$ and every compact subset of G is a subset of K_n for some n.
 - b) Prove that for a given ∈> 0 there exists a δ> 0 and a compact set K ⊂ G such that for f and g in C(G, Ω) sup {d(f(z), g(z)) : z∈K} < δ implies ρ(f, g) < ∈.</p>
- 14. State and prove Arzela-Ascoli theorem.
- 15. a) Let G be a region which is not the whole plane and such that every non-vanishing analytic function on G has an analytic square root. If a∈ G, prove that there exists a one-one analytic function f on G such that f(a) = 0 and f(G) = D = {z : |z| < 1}.</p>
 - b) Let Re $z_n > -1$. Prove that the series $\sum \log (1 + z_n)$ converges absolutely iff the series $\sum z_n$ converges absolutely. (4×16=64)