K18P 0228

Reg. No. :

Name :

Second Semester M.Sc. Degree (Regular) Examination, March 2018 MATHEMATICS (2017 Admn.)

MAT 2C 06 : Advanced Abstract Algebra

Time : 3 Hours

Max. Marks : 80

PART - A

Answer any 4 questions. Each question carries 4 marks.

- 1. Give an example of a principal ideal domain. Justify your claim.
- Prove that if N is a multiplicative norm on an integral domain D, then N(u) = 1 for every unit u in D.
- 3. Prove that these exist algebraic extensions which are not finite extensions.
- 4. Prove that every finite field is an algebraic extension of \mathbb{Z}_p for some prime p.
- 5. Find all isomorphisms of $\mathbb{Q}(3\sqrt{2})$ onto a subfield of $\overline{\mathbb{Q}}$. Which of them are

automorphisms?

 If f(x) ∈ Q [x] is irreducible over Q, prove that all zeros of f(x) have multiplicity one. (4×4=16)

PART - B

Answer 4 questions without omitting any Unit. Each question carries 16 marks.

Unit – I

7.	Pro fac	ove that if D is a unique factorization domain, then D[x] is also a unique ctorization domain.	16
8.	a)	Prove that if F is a field and x and y are indeterminates, then $F[x, y]$ is not a PID.	5
	-	Prove that if D is a PID, then any two non-zero elements a and b in D. Gave a gcd and that any gcd of a and b can be expressed as $\lambda a + \mu b$ for some $\lambda, \mu \in D$.	7
	c)	Find all the units in $\mathbb{Z}\left[\sqrt{-5}\right]$.	4
9.	a)	What is $\mathbb{Z}[i]$? Prove that $\mathbb{Z}[i]$ is a Euclidean domain.	12
	b)	State Kronecker's theorem. How would you construct an extension field of \mathbb{Q} contain a root of the polynomial $x^3 + 2x^2 + 4x + 6$?	4
			T O.

K18P 0228

Unit -- II

e that if α and $\beta \neq 0$ are constructible real numbers, then $\frac{\alpha}{\beta}$ is also tructible. e that 'squaring the circle is impossible. e that if F is a finite field and n is any positive integer, then these is an ucible polynomial in F[x] of degree n. : i \in I} is a collection of automorphisms of a field E, prove that the set I elements in E, left fixed by σ_i , for all $i \in I$, is a subfield of E. cribe all automorphisms of the field : $\alpha(\sqrt{2}, \sqrt{3}, \sqrt{5})$ $\mathbb{Z}_2(\alpha)$, where α is the root of $x^2 + x + 1$, in the algebraic closure of \mathbb{Z}_2 . 1 Unit – III re that if $F \leq E \leq \overline{F}$ and if every automorphism of \overline{F} leaving F fixed induces intomorphism of E, then E is a splitting field over F.	6 4 8 6
e that $\sqrt[3]{2}$ is not a member of $\mathbb{Q}(\sqrt{2})$. Also obtain $\left\lfloor \mathbb{Q}(\sqrt{2},\sqrt[3]{2}):\mathbb{Q}\right\rfloor$. e that if α and $\beta \neq 0$ are constructible real numbers, then $\frac{\alpha}{\beta}$ is also tructible. e that 'squaring the circle is impossible. e that if F is a finite field and n is any positive integer, then these is an ucible polynomial in F[x] of degree n. : i \in I} is a collection of automorphisms of a field E, prove that the set I elements in E, left fixed by σ_i , for all $i \in I$, is a subfield of E. cribe all automorphisms of the field : $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ $\mathbb{Z}_2(\alpha)$, where α is the root of $x^2 + x + 1$, in the algebraic closure of \mathbb{Z}_2 . 1 Unit – III re that if $F \leq E \leq \overline{F}$ and if every automorphism of \overline{F} leaving F fixed induces utomorphism of E, then E is a splitting field over F.	4 4 8 6
e that if α and $\beta \neq 0$ are constructible real numbers, then $\frac{\alpha}{\beta}$ is also tructible. e that 'squaring the circle is impossible. e that if F is a finite field and n is any positive integer, then these is an ucible polynomial in F[x] of degree n. : $i \in I$ } is a collection of automorphisms of a field E, prove that the set I elements in E, left fixed by σ_i , for all $i \in I$, is a subfield of E. cribe all automorphisms of the field : $\Omega(\sqrt{2}, \sqrt{3}, \sqrt{5})$ $\mathbb{Z}_2(\alpha)$, where α is the root of $x^2 + x + 1$, in the algebraic closure of \mathbb{Z}_2 . 1 Unit – III re that if $F \leq E \leq \overline{F}$ and if every automorphism of \overline{F} leaving F fixed induces iutomorphism of E, then E is a splitting field over F.	4 4 8 6
tructible. e that 'squaring the circle is impossible. e that if F is a finite field and n is any positive integer, then these is an ucible polynomial in F[x] of degree n. : i \in I} is a collection of automorphisms of a field E, prove that the set I elements in E, left fixed by σ_i , for all $i \in I$, is a subfield of E. cribe all automorphisms of the field : $\Omega(\sqrt{2}, \sqrt{3}, \sqrt{5})$ $\mathbb{Z}_2(\alpha)$, where α is the root of $x^2 + x + 1$, in the algebraic closure of \mathbb{Z}_2 . 1 Unit – III re that if $F \leq E \leq \overline{F}$ and if every automorphism of \overline{F} leaving F fixed induces intomorphism of E, then E is a splitting field over F.	4 8 6
tructible. e that 'squaring the circle is impossible. e that if F is a finite field and n is any positive integer, then these is an ucible polynomial in F[x] of degree n. : i \in I} is a collection of automorphisms of a field E, prove that the set I elements in E, left fixed by σ_i , for all $i \in I$, is a subfield of E. cribe all automorphisms of the field : $\Omega(\sqrt{2}, \sqrt{3}, \sqrt{5})$ $\mathbb{Z}_2(\alpha)$, where α is the root of $x^2 + x + 1$, in the algebraic closure of \mathbb{Z}_2 . 1 Unit – III re that if $F \leq E \leq \overline{F}$ and if every automorphism of \overline{F} leaving F fixed induces intomorphism of E, then E is a splitting field over F.	4 8 6
e that 'squaring the circle is impossible. e that if F is a finite field and n is any positive integer, then these is an ucible polynomial in F[x] of degree n. : i \in I} is a collection of automorphisms of a field E, prove that the set I elements in E, left fixed by σ_i , for all i \in I, is a subfield of E. cribe all automorphisms of the field : $Q(\sqrt{2}, \sqrt{3}, \sqrt{5})$ $Z_2(\alpha)$, where α is the root of $x^2 + x + 1$, in the algebraic closure of \mathbb{Z}_2 . 1 Unit – III re that if $F \leq E \leq \overline{F}$ and if every automorphism of \overline{F} leaving F fixed induces submorphism of E, then E is a splitting field over F.	8 6 0
e that if F is a finite field and n is any positive integer, then these is an ucible polynomial in F[x] of degree n. : i \in I} is a collection of automorphisms of a field E, prove that the set I elements in E, left fixed by σ_i , for all i \in I, is a subfield of E. cribe all automorphisms of the field : $\Omega(\sqrt{2}, \sqrt{3}, \sqrt{5})$ $\mathbb{Z}_2(\alpha)$, where α is the root of $x^2 + x + 1$, in the algebraic closure of \mathbb{Z}_2 . 1 Unit – III we that if $F \leq E \leq \overline{F}$ and if every automorphism of \overline{F} leaving F fixed induces intomorphism of E, then E is a splitting field over F.	6
I elements in E, left fixed by σ_i , for all $i \in I$, is a subfield of E. cribe all automorphisms of the field : $\alpha(\sqrt{2}, \sqrt{3}, \sqrt{5})$ $\mathbb{Z}_2(\alpha)$, where α is the root of $x^2 + x + 1$, in the algebraic closure of \mathbb{Z}_2 . 1 Unit – III re that if $F \leq E \leq \overline{F}$ and if every automorphism of \overline{F} leaving F fixed induces automorphism of E, then E is a splitting field over F.	0
$\alpha(\sqrt{2}, \sqrt{3}, \sqrt{5})$ $\mathbb{Z}_{2}(\alpha)$, where α is the root of $x^{2} + x + 1$, in the algebraic closure of \mathbb{Z}_{2} . 1 Unit – III we that if $F \leq E \leq \overline{F}$ and if every automorphism of \overline{F} leaving F fixed induces automorphism of E , then E is a splitting field over F .	
$\mathbb{Z}_{2}(\alpha)$, where α is the root of $x^{2} + x + 1$, in the algebraic closure of \mathbb{Z}_{2} . 1 Unit – III we that if $F \leq E \leq \overline{F}$ and if every automorphism of \overline{F} leaving F fixed induces automorphism of E, then E is a splitting field over F.	
The that if $F \le E \le \overline{F}$ and if every automorphism of \overline{F} leaving F fixed induces utomorphism of E, then E is a splitting field over F.	8
utomorphism of E, then E is a splitting field over F.	8
	1999 - C.I.
	4
for which finite extensions F of Q, the following is true. $Q] = {F : Q} = G(F/Q) .$	4
F be a field, E be a finite extension of F and K be a finite extension of E. ve that K is separable over F if and only if K is separable over E and separable over F.	6
ve that any finite field is perfect.	0
K be a finite normal extension of F and let E be a field such that $F \le E \le K$.	
[K : E] = G(K/E) and $[E : F] = the number of left cosets of G(K/E) in G(K/E)$	
The lattice diagram of subgroups of G(K/F) is the inverted lattice of intermediate fields of K over F. (3+4+	4)
ve that for every positive integer n, there exists a finite normal extension K such that $G(K/F) = \mathbb{Z}_n$.	5
	ve that K is a finite normal extension of E. [K : E] = G(K/E) and $[E : F] =$ the number of left cosets of G(K/E) in G(K/F). The lattice diagram of subgroups of G(K/F) is the inverted lattice of