

K18P 0230

Reg. No. :

Name :

Second Semester M.Sc. Degree (Regular) Examination, March 2018 Mathematics (2017 Admn.) MAT 2C08 : ADVANCED TOPOLOGY

Time : 3 Hours

Max. Marks : 80

PART - A

Answer any four questions from this Part. Each question carries 4 marks.

- 1. Give an example of a bounded metric space that is not compact. Justify your example.
- Is a compact subset of a topological space necessarily closed ? Justify your answer.
- Prove that every subspace of a T₂-space is a T₂-space.
- Let X ={1, 2, 3} and ℑ = {φ, {1}, {2}, {1, 2}, X}. Determine whether (X, ℑ) is a normal space.
- 5. Show that there is a homomorphism $h : \mathbb{R} \to (-1, 1)$.
- 6. Show that real line $\mathbb R$ with usual topology is contractible.

PART – B

Answer any four questions from this part without omitting of any Unit. Each question carries 16 marks.

UNIT-I

7. a) Define :

- i) Bolzano-Weierstrass property.
- ii) Countable compactness.
- iii) T₁-space.
- b) Let(X, ℑ) be a T₁-space. Prove that X is countably compact if and only if it has the Bolzano Weierstrass property.

P.T.O.

 $(4 \times 4 = 16)$

K18P 0230

- a) Prove that a topological space (X, J) is compact if and only if every family of closed subsets of X with the finite intersection property has a nonempty intersection.
 - b) Prove that the product of any finite number of compact spaces is compact.
- 9. a) Define a locally compact space. Show that the real line with usual topology is locally compact but not compact.
 - b) Prove that every closed subspace of a locally compact Hausdorff space is locally compact.
 - c) Show that the continuous image of a locally compact space need not be locally compact.

UNIT - II

- 10. a) Let (X, \mathcal{I}) be a topological space. Prove that (X, \mathcal{I}) is a T₁-space if and only if for each $x \in X$, $\{x\}$ is closed.
 - b) Let $\{(X_{\alpha}, \mathcal{I}_{\alpha}) : \alpha \in \Lambda\}$ be a family of topological spaces and let $X = \prod X_{\alpha}$.

Prove that (X, \mathcal{I}) is regular if and only if (X_{α}, \mathcal{I}_{α}) is regular for each $\alpha \in \Lambda$.

- a) Let (X, ≤) be a well ordered set and let 7 be the order topology on X. Prove that (X, 7) is a normal space.
 - b) Prove that a T₁-space is completely normal if and only if every subspace of it is normal.
- 12. a) Prove that every second countable space is Lindelof. Show by an example that a Lindelof space need not be second countable.
 - b) Prove that every regular Lindelof space is normal.

UNIT – III

- a) State (no proof) Urysohn's lemma. Deduce that every normal space is completely regular.
 - b) Prove that a T₁-space (X, \mathcal{I}) is normal if and only if whenever A is a closed subset of X and f : A \rightarrow [-1, 1] is a continuous function, then there is a continuous function F : X \rightarrow [-1, 1] such that Fl_A = f.
- 14. State and prove Alexander subbase theorem.
- 15. a) Let (X, J) and (Y, U) be topological spaces. Prove that the relation being homotopic is an equivalence relation on the collection C(X, Y) of all continuous functions that map X into Y.
 - b) Let (X, \mathcal{I}) be a topological space, let $x_0 \in X$ and let $[\alpha], [\beta], [\gamma] \in \Pi_1(X, x_0)$. Prove that $([\alpha] \circ [\beta]) \circ [\gamma] = [\alpha] \circ ([\beta] \circ [\gamma])$.

 $(4 \times 16 = 64)$