

K18P 0231

Reg. No. : Name :

Second Semester M.Sc. Degree (Regular) Examination, March 2018 MATHEMATICS (2017 Admn.) MAT 2 C09 : Foundations of Complex Analysis

Time : 3 Hours

Max. Marks: 80

PART – A

Answer any four questions from this part. Each question carries 4 marks.

1. Evaluate $\int_{r} \frac{z^2 + 1}{z(z^2 + 4)} dz$ where $r(t) = re^{it}$, $0 \le t \le 2\pi$, for all possible values of

r with 0 < r < 2.

- Show that the relation homotopy is an equivalence relation on the set of all closed rectifiable curves in a region.
- 3. Define :
 - i) isolated singularity
 - ii) removable singularity.

Illustrate with examples.

4. Does there exist an analytic function $f: D \to D$ with $f\left(\frac{1}{2}\right) = \frac{3}{4}$ and

$$f'\left(\frac{1}{2}\right) = \frac{2}{3}$$
 (where D = {z : | z | < 1}) ? Why ?

- 5. Define the set C (G, Ω). Can it be empty ? Why ?
- 6. Show that $\prod_{n=2}^{\infty} \left(1 \frac{1}{n^2}\right) = \frac{1}{2}$. (4×4=16)

PART – B

Answer **any four** questions from this part without omitting **any** unit. **Each** guestion carries **16** marks.

Unit – I

- 7. a) Let G be a connected open set and let $f : G \to \mathbb{C}$ be an analytic function. Prove that $f \equiv 0$ if and only if the set $\{z \in G : f(z) = 0\}$ has a limit point in G.
 - b) State and prove the maximum modulus theorem.
- 8. a) Define the winding number and prove that it is an integer.
 - b) State and prove the first version of Cauchy's integral formula.
- 9. a) Let G be a region and let $f: G \to \mathbb{C}$ be a continuous function such that

 $\int f = 0$ for every path T in G. Prove that f is analytic in G.

b) Let G be an open set and let $f : G \to \mathbb{C}$ be a differentiable function. Prove that f is analytic on G.

Unit – II

- 10. a) State the theorem (no proof) on Laurent series development. Use the Laurent expansion to classify the isolated singularity at a point z = a of a function f analytic in {z : 0 < |z a| < R}. Justify your classification.
 - b) State and prove Casaroti-Weierstrass theorem.
- 11. a) State and prove residue theorem.

b) Use residue theorem to show that
$$\int_{0}^{\pi} \frac{\sin x}{x} dx = \frac{\pi}{2}$$
.

- 12. a) State and prove Schwarz's lemma.
 - b) If |a| < 1, prove that the map φ_a defined by $\varphi_a(z) = \frac{z-a}{1-\overline{a}z}$ is a one-one map

of D = {z : | z | < 1} onto itself; the inverse of ϕ_a is ϕ_{-a} . Also prove that ϕ_a

maps ∂D onto ∂D , $\phi_a(a) = 0$, $\phi'_a(a) = 1 - |a|^2$ and $\phi'_a(a) = (1 - |a|^2)^{-1}$.

-3-

Unit – III

- a) Suppose F C C (G, Ω) is equicontinuous at each point of G. Prove that F is equicontinuous over each compact subset of G.
 - b) State and prove Arzela-Ascoli theorem.
- 14. a) Define the set H(G). If {f_n} is a sequence in H(G) and f belongs to C(G, C) such that $f_n \rightarrow f$ then prove that f is analytic and $f_n^{(k)} \rightarrow f^{(k)}$ for each integer $k \ge 1$.
 - b) Prove that a family F in H(G) is normal if and only if F is locally bounded.
- 15. a) State (no proof) the Weierstrass factorization theorem.
 - b) Let G be a region and let {a_j} be a sequence of distinct point in G with no limit point in G; and let {m_j} be a sequence of integers. Then prove that there is an analytic function f defined on G whose only zeros are at the points a_j and further that a_j is a zero of multiplicity m_j. (4×16=64)