

K18P 0229

Reg. No. :

Name :

Second Semester M.Sc. Degree (Regular) Examination, March 2018 MATHEMATICS (2017 Admn.) MAT 2C 07 : Measure and Integration

Time : 3 Hours

Max. Marks: 80

PART - A

Answer any four questions from this part. Each question carries 4 marks :

- 1. Prove that the outer measure of a countable set is 0.
- 2. For k > 0 and $A \subseteq \mathbb{R}$, let $kA = [kx : x \in A]$. Show that $m^*(kA) = km^*(A)$.
- Let f be a measurable function and let f = g a.e. Then prove that g is measurable.
- 4. Show that if μ is a σ -finite measure on R, then the extension $\overline{\mu}$ of μ to S* is also σ -finite.
- 5. Show that if f, $g \in L^1(\mu)$, then prove that $|f^2 + g^2| \frac{1}{2} \in L^1(\mu)$.
- 6. Show that $\lim_{x \to 0} \int_{0}^{x} \frac{dx}{(1 + x / n)^{n} x^{\nu n}} = 1.$

PART - B

Answer **any four** questions from this part without omitting **any** unit. **Each** question carries **16** marks.

Unit - I

- 7. a) Let M be a class of Lebesgue measurable sets. Then prove that M is closed under the formation of countable unions.
 - b) Prove that every interval is measurable.

P.T.O.

 $(4 \times 4 = 16)$

K18P 0229

- a) If m*(E) < ∞ then prove that E is measurable if and only if, ∀ε > 0, ∃ disjoint finite intervals I₁ I₂ ..., I_n such that m*(E∆Uⁿ_i, I_i) < ε.
 - b) Prove that Lebesgue measure is a regular measure.
- 9. a) Show that there exists a non measurable set.
 - b) State and prove Fatou's Lemma.

Unit – II

- 10. a) If f is Riemann integrable and bounded over the finite interval [a, b], then prove that f is integrable and $R \int_{a}^{b} f dx = \int_{a}^{b} f dx$.
 - b) Let f be bounded and measurable on a finite interval [a, b] and let $\epsilon > 0$. Then prove that there exist.
 - i) A step function (a). If μ is measure on a ring R and if the set function $\mu^*(E)$ is define h such that $\int_{0}^{b} |f-h| dx < \epsilon$.
 - ii) A continuous function g such that g vanishes outside a finite interval and $\int_{a}^{b} |f-g| dx < \epsilon$.

11. a) If μ is a measure on a ring R and if the set function $\mu^*(E)$ is defined on H (R) by $\mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in R, n = 1, 2, ..., E \subseteq \bigcup_{n=1}^{\infty} E_n \right\}$. Then prove

that μ^* is an outer measure on H(R).

- b) Let A, B be subsets of a set C, let A, B, C \in R and let μ be a measure on R. Show that if $\mu(A) = \mu(C) < \infty$. Then prove that $\mu(A \cap B) = \mu(B)$.
- a) If μ is σ-finite measure on R, then prove that it has a unique extension to the σ-ring S(R).
 - b) Let S be the class of subsets of ℝ such that E ∈ S if either E or CE is at most countable. Show that S is a σ-ring.

Unit – III

13. a) Let $\{a_n\}$ be a sequence of non-negative numbers such that $a_n < \infty$, for each $n \in \mathbb{N}$ and for each $A \subseteq \mathbb{N}$, let $\mu(A) = \sum_{n \in A} a_n$. Show that $[\![\mathbb{N}, P(\mathbb{N}), \mu]\!]$ a σ -finite complete measure space.

b) Let $\left[\!\left[X,S,\mu\right]\!\right]$ be a measure space and $E_n\in S,n=1,\,2,\,...$ show that

i) $\mu(\liminf E_n) \leq \liminf \mu(E_n)$

ii) If $\mu(X) < \infty$ then lim sup $\mu(E_n) \le \mu$ (lim sup E_n).

14. a) Let $[X, S, \mu]$ be a measure space and f a non negative measurable

function. Then prove that $\phi(E) = \int_{E} f d\mu$ is a measure on the measurable space [X,S]. Further prove that, if $\int f d\mu < \infty$, then $\forall \epsilon > 0, \exists \delta > 0$ such that, if $A \in S$ and $\mu(A) < \delta$, then $\phi(A) < \epsilon$.

b) Let E and F be measurable sets, $f \in L(E)$ and $\mu(E \Delta F) = 0$. then prove that $f \in L(F)$ and $\int_{E} fd\mu = \int_{E} fd\mu$.

15. a) State and prove Holder's inequality.

b) Prove that if $1 \le p < \infty$ and $\{f_n\}$ is a sequence in $L^p(\mu)$ such that $||f_n - f_m|| p \to 0$ as n, $m \to \infty$, then there exists a function f and a sequence $\{n_i\}$ such that $\lim f_{n_i} = f$ a.e. Further prove that $f \in L^p(\mu)$ and $||f_n - f||_p \to 0$. (4×16=64)