

K18P 1035

Reg. No. :

Name :

Third Semester M.Sc. Degree (Reg.) Examination, October 2018 MATHEMATICS (2017 Admn. Onwards) MAT3C14 : Advanced Real Analysis

Time : 3 Hours

Max. Marks: 80

PART - A

Answer four questions from this part. Each question carries 4 marks.

- Give an example of a sequence of functions which converges pointwise but not uniformly.
- If {f_n} and {g_n} converge uniformly on a set E, prove that {f_n + g_n} converges uniformly on E.
- 3. Consider $f(x) = \sum_{n=1}^{\infty} \frac{1}{1+n^2x}$. On what intervals does it fail to converge uniformly ?
- 4. Show that e^x defined on \mathbb{R}^1 satisfy the relation $(e^x)' = e^x$.
- Define orthogonal system of functions and give an example.
- 6. Prove that $\lim_{x \to 0} \frac{\log(1+x)}{x} = 1$. (4×4=16)

PART – B

Answer 4 questions from this part without omitting any Unit. Each question carries 16 marks.

Unit – I

- 7. a) If $\{f_n\}$ is a sequence of continuous function on E, and if $f_n \rightarrow f$ uniformly on E, then show that f is continuous on E.
 - b) If $f_n \in \mathcal{R}(\alpha)$ on [a, b] and if $f(x) = \sum_{n=1}^{\infty} f_n(x)$ ($a \le x \le b$), the series converging. uniformly on [a, b], then prove that $\int_a^b f d\alpha = \sum_{n=1}^{\infty} \int_a^b f_n d\alpha$.

K18P 1035

-2-

- a) Even if {f_n} is a uniformly bounded sequence of continuous functions on a compact set E, prove that there need not exist a subsequence which converges pointwise on E.
 - b) If $\{f_n\}$ is a pointwise bounded sequence of complex functions on a countable set E, then prove that $\{f_n\}$ has a subsequence $\{f_{n_k}\}$ such that $\{f_{n_k}(x)\}$ converges for every $x \in E$.
- 9. State and prove Stone Weierstrass theorem.

Unit – II

- 10. a) Suppose $\sum c_n$ converges. Put $f(x) = \sum_{n=0}^{\infty} c_n x^n (-1 < x < 1)$. Then prove that $\lim_{x \to 1} f(x) = \sum_{n=0}^{\infty} c_n$.
 - b) Define analytic functions and give an example.
- 11. a) Suppose the series $\sum a_n x^n$ and $\sum b_n x^n$ converge in the segment S = (-R, R). Let E be the set of all $x \in S$ at which $\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} b_n x^n$. If E has a limit point in S, then prove that $a_n = b_n$ for n = 0, 1, 2, ... Hence $\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} b_n x^n$ for all $x \in S$.
 - b) Let $\{\phi_n\}$ be orthonormal on [a, b]. Let $s_n(x) = \sum_{m=1}^n c_m \phi_m(x)$ be the nth partial sum of the Fourier series of f, and suppose $t_n(x) = \sum_{m=1}^n \gamma_m \phi_m(x)$. Then prove that $\int_a^b |f s_n|^2 dx \le \int_a^b |f t_n|^2 dx$, and equality holds if and only if $\gamma_m = c_m (m = 1, 2, ..., n)$
- 12. a) If, for some x, there are constants $\delta > 0$ and M < ∞ such that

 $|f(x+t)-f(x)| \leq M|t| \text{ for all } t \in (-\delta,\,\delta), \text{ then prove that } \lim_{N \to \infty} S_N(f\,;\,x) = f(x)\,.$

- b) If f(x) = 0 for all x in some segment J, then prove that $\lim S_N(f; x) = 0$ for every $x \in J$.
- c) If f is continuous (with period 2π) and if ∈ > 0, then prove there is a trigonometric polynomial P such that |P(x) f(x)| < ∈ for all real x.

Unit – III

-3-

- 13. a) Define the dimension of a vector space and give an example.
 - b) Define basis of a vector space.
 - c) Let r be a positive integer. If a vector space X is spanned by a set of r vectors, then prove that dim X ≤ r.
- 14. a) Suppose E is an open set in ℝⁿ, f maps E into ℝ^m, f is differentiable at x₀ ∈ E, g maps an open set containing f(E) into ℝ^k, and g is differentiable at f(x₀). Then prove that the mapping F of E into ℝ^k defined by F(x) = g(f(x)) is differentiable at x₀ and F'(x₀) = g'(f(x₀)f'(x₀)).
 - b) Suppose f maps a convex open set E ⊂ ℝⁿ into ℝ^m, f is differentiable in E, and there is a real number M such that || f'(x) || ≤ M for every x ∈ E. Then prove that || f(b) f(a) | ≤ M | b a | for all a ∈ E, b ∈ E.
- 15. State and prove implicit function theorem.

(4×16=64)