

K18P 1036

Reg. No. :

Name :

III Semester M.Sc. Degree (Reg.) Examination, October 2018 MATHEMATICS (2017 Admn. Onwards) MAT3E01 : Graph Theory

Time : 3 Hours

Max. Marks: 80

Instructions : 1) Answer any four questions from Part – A. Each question carries 4 marks.

 Answer any 4 questions without omitting any Unit from Part – B. Each question carries 16 marks.

PART - A

- I. Answer any 4 questions. Each question carries 4 marks.
 - 1) Define a (k, l) Ramsay graph and give one example.
 - 2) In a critical graph, prove that no vertex cut is a clique.
 - 3) For a bipartite graph G, show that $\chi'(G) = \Delta$.
 - 4) If G is a planar graph then prove that every subgraph of G is planar.
 - Let I be a flexible vertex labelling of G. If G₁ contains a perfect matching M*, then prove that M* is an optimal matching of G.
 - 6) Let u and v be two distinct vertices of a graph G. Then prove that a set S of vertices of G is u - v separating if and only if every u - v path has at least one internal vertex belonging to S.

PART - B

Answer any 4 questions without omitting any unit. Each question carries 16 marks.

Unit - I

- II. a) Define the independence number and covering number of a graph and prove that the sum of the independence number and covering number is the number of vertices.
 - b) Define the Ramsay number r(k, l) and show that $r(k, k) \ge 2^{k/2}$.

P.T.O.

8

8

111.	a)	If a simple graph G contain no K_{m+1} , then prove that G is degree majorised by same complete m-partite graph H. Also show that if G has the same degree sequence as H then $G \cong H$.	8
	b)	Define the chromatic number χ (G) of a graph G. Give example of a critical graph and a graph which is not critical. Also for a graph G, show that $\chi \leq \Delta + 1$. Give an example of a graph where $\chi = \Delta + 1$.	8
IV.	a)	For any positive integer k, prove that there exist a k-chromatic graph containing no triangles.	8
	b)	If G is 4-chromatic, then prove that G contain a subdivision of k_4 .	8
		Unit – II	
V.	a)	If G is bipartite show that $\chi' = \Delta$.	5
	b)	Let G be a connected graph that is not an odd cycle, then prove that G has a 2-edge colouring in which both colours are represented at each vertex of degree at least two.	6
	c)	What is a time tabling problem and explain how one can solve the time tabling problem using edge colouring ?	5
VI.	a)	Define a dual graph of a graph G and prove or disprove – "Dual of isomorphic plane graph are isomorphic".	6
	b)	If G is a connected plane graph, then prove that $V - \Sigma + \phi = 2$, further deduce that K ₅ is non planar.	10
VII.	St	ate and prove Kuratowski's theorem.	16
		Unit – III	
VIII	.a)	In a bipartite graph, prove that the number of edges in a maximum matching is equal to the number of vertices in a maximum covering.	10
	b)	If G is a k-regular bipartite graph with $k > 0$ then prove that G has a perfect matching.	6
IX.	a)	Prove that every 3-regular graph without cut edge has a perfect matching.	6
	b)	Explain in detail the Hungarian method to find an M-augmenting path in a graph and draw its flow-chart.	10
Х.	a)	Let f be a flow on a network N = (V, A) and let f have value d. If A (X, \overline{X}) is a cut in N then prove that d = f (X, \overline{X}) – f (\overline{X} , X). Also prove that	2
		$d\leq C~(X,~\overline{X}~).$	8
	b)	State and prove Mengers theorem.	8

K18P 1036

12