

K18P 1032

Reg. No. :

Name :

Third Semester M.Sc. Degree (Reg.) Examination, October 2018 MATHEMATICS (2017 Admn. Onwards) MAT3C11 : Number Theory

Time : 3 Hours

Max. Marks: 80

PART - A

Answer any four questions. Each question carries 4 marks.

- 1. Prove that every number of the form $2^{a-1}(2^a-1)$ is perfect if $2^a 1$ is prime.
- 2. Solve the congruence $5x \equiv 3 \pmod{24}$.
- 3. If p is an odd prime, prove that $\sum_{r=1}^{p-1} r(r|p) = 0$, if $P \equiv 1 \pmod{4}$.
- 4. If $m \ge 1$, (a, m) = 1 and $f = exp_m(a)$, then prove that $a^k \equiv a^h \pmod{m}$ if and only if $k \equiv h \pmod{f}$.
- 5. Let Z be a Z-module with the obvious action. Find all the submodules.
- 6. Let $K = Q(\zeta)$, where $\zeta = e^{2\pi i/p}$ for a rational prime p. In the ring of integers of $\mathbb{Z}[\zeta]$, show that $\alpha \in \mathbb{Z}[\zeta]$ is a unit if and only if $N_{\kappa}(\alpha) = \pm 1$. (4×4=16)

PART - B

Answer any four questions without omitting any Unit. Each question carries 16 marks.

Unit – I

- 7. a) State and prove the fundamental theorem of arithmetic.
 - b) Define the Euler totient function $\varphi(n)$ and derive a product formula for it.

K18P 1032

 a) Define the Dirichlet product f*g of two arithmetic functions. If both g and f*g are multiplicative, prove that f is also multiplicative.

-2-

- b) Let f be multiplicative. Prove that f is completely multiplicative if and only if f⁻¹(n) = µ(n) f(n) for all n ≥ 1.
- c) Prove that $\varphi^{-1}(n) = \sum_{d|n} d \mu(d)$
- 9. a) State and prove Lagrange's theorem on polynomial congruences.
 - b) State the principle of cross classification. Given integers r, d and k such that d|k, d > 0, k ≥ 1 and (r, d) = 1. Then prove that the number of elements of the set S = {r + td : t = 1, 2, ..., k/d} which are relatively prime to k is φ(k)/φ(d).

Unit – II

- 10. a) State and prove the quadratic reciprocity law.
 - b) Determine whether 219 is a quadratic residue or non-residue modulo 383.
- a) Let p be an odd prime and let d be any positive divisor of p 1. Prove that in every reduced residue system modulo p there are φ(d) numbers a such that exp_n(a) = d.
 - b) If $\alpha \ge 3$, prove that there are no primitive roots mod 2^{α} .
- a) Encipher the message HAVEANICETRIP using a Vigenere cipher with the keyword MATH.
 - b) The ciphertext ALXWU VADCOJO has been enciphered with the cipher $C_1 \equiv 4P_1 + 11P_2 \pmod{26}, C_2 \equiv 3P_1 + 8P_2 \pmod{26}$. Derive the plain text.
 - c) Find the unique solution of the knapsack problem

 $51 = 3 x_1 + 5 x_2 + 9 x_3 + 18 x_4 + 37 x_5$

Unit – III

- 13. a) Let G be a free abelian group of rank n with basis {x₁, ..., x_n}. Suppose (a_{ij}) is an n × n matrix with integer entries. Prove that the elements
 - $y_i = \sum_{j=1}^{n} a_{ij} x_j$, (i = 1, ...,n) form a basis of G if and only if (a_{ij}) is unimodular.
 - b) Prove that every subgroup H of a free abelian group of rank n is free of rank s ≤ n.
- 14. a) If K is a number field then prove that $K = Q(\theta)$ for some algebraic number θ .
 - b) Prove that a complex number $\dot{\theta}$ is an algebraic integer if and only if the additive group generated by all powers 1, θ , θ^2 , ..., is finitely generated.
- 15. a) Prove that the ring of integers of the cyclotomic field $Q(\zeta)$, where $\zeta = e^{2\pi i/p}$, p an odd prime is $\mathbb{Z}[\zeta]$.
 - b) Prove that the discriminant of $Q(\zeta)$, where $\zeta = e^{2\pi i/p}$, p an odd prime is (-1) $^{(p-1)/2} p^{p-2}$. (4×16=64)