

0151443

K19P 1189

Reg. No. :

Name :

III Semester M.Sc. Degree (CBSS-Reg./Suppl./Imp.) Examination, October - 2019 (2017 Admn. Onwards) MATHEMATICS MAT3C14 : ADVANCED REAL ANALYSIS

Time : 3 Hours

Max. Marks: 80

PART - A

Answer Four questions from this part. Each question carries 4 marks. (4×4=16)

- If {f_n} and {g_n} are sequences of bounded functions and converge uniformly on a set E, prove that {f_n g_n} converges uniformly on E.
- 2. Consider $f(x) = \sum_{n=1}^{\infty} \frac{1}{1+n^2x}$. Is f continuous wherever the series converges?
- **3.** Show that e^x defined on \mathbb{R}^1 satisfy the relation $e^{x+y} = e^x e^y$.
- 4. Show that the functional equation $\Gamma(x+1) = x\Gamma(x)$ holds if $0 < x < \infty$.
- 5. Prove that $\lim_{n\to\infty} \left(1 + \frac{x}{n}\right)^n = e^x$.
- 6. If $A \in L(\mathbb{R}^n, \mathbb{R}^m)$ and $B \in L(\mathbb{R}^m, \mathbb{R}^k)$, then prove that $||BA|| \le ||B|| ||A||$.

PART - B

Answer Four questions from this part without omitting any unit. Each question carries 16 marks. (4×16=64).

UNIT-I

7. a) Suppose $\lim_{n\to\infty} f_n(x) = f(x)(x \in E)$ and put $M_n = \sup_{x \in E} |f_n(x) - f(x)|$.

P.T.O.

K19P1189

Show that $f_n \to f$ uniformly on E if and only if $M_n \to 0 as n \to \infty$.

- b) Suppose f_n → f uniformly on a set E in a metric space. Let x be a limit point of E, and suppose that lim_{t→x} f_n(t) = A_n (n = 1, 2, ...). Then prove that {A_n} converges and lim_{t→x} f(t) = lim_{n→∞} A_n.
- a) If X is a metric space, C(X) denote the set of all complex valued, continuous, bounded functions with domain X. Show that C(X) with supremum norm is a metric space.
 - Prove that there exists a real continuous function on the real line which is nowhere differentiable.
- 9. a) If K is a compact metric space, if $f_n \in C(K)$ For n = 1, 2, ... and if $\{f_n\}$ is pointwise bounded and equicontinuous on K then prove that
 - i) $\{f_n\}$ is uniformly bounded on K.
 - ii) {f_n} contains a uniformly convergent subsequence.
 - b) Define equicontinuity and give an example.

UNIT - II

10. a) Suppose the series $\sum_{n=0}^{\infty} C_n x^n$ converges for |x| < R and define $f(x) = \sum_{n=0}^{\infty} C_n x^n (|x| < R)$.

Then prove that $\sum_{n=0}^{\infty} C_n x^n$ converges uniformly on $[-R+\varepsilon, R-\varepsilon]$, no matter which $\varepsilon > 0$ is chosen. Also shows that the funciton f is continuous and differentiable in (-R,R), and $f'(x) = \sum_{n=1}^{\infty} nc_n x^{n-1} ((|x| < R).$

b) Given a double sequence $\{a_{ij}\}$, i=1,2,..., j=1,2,... suppose that $\sum_{j=1}^{n} |a_{ij}| = b_i (i = 1,2,...)$ and $\sum b_i$ converges. Then show that $\sum_{j=1}^{n} \sum_{j=1}^{n} a_{ij} = \sum_{j=1}^{n} \sum_{j=1}^{n} a_{ij}$.

(3)

- 11. a) Suppose $a_{0,...,a_n}$ are complex numbers $n \ge 1, a_n \ne 0, P(z) = \sum_{k=0}^{\infty} a_k z^k$. Then prove that P(z)=0 for some complex number z.
 - b) If, for some x, there are constants $\delta > 0$ and $M < \infty$ such that $|f(x+t) f(x)| \le M |t|$ for all $t \in (-\delta, \delta)$, then prove that $\lim_{N \to \infty} S_N(f;x) = f(x)$.
- 12. a) If f is continuous (with period 2π) and if $\epsilon > 0$, then prove there is a trigonometric polynomial P such that $|P(x) f(x)| < \epsilon$ for all real x.
 - b) If f is a positive function on $(0,\infty)$ such that
 - i) f(x+1) = x f(x).
 - ii) f(1)=1
 - iii) log f is convex Then prove that $f(x) = \Gamma(x)$.

UNIT - III

- 13. a) Suppose X is a vector space, and dim X=n. Show that
 - i) a set E of n vectors in X spans X if and only if E is independent
 - ii) X has a basis, and every basis consist of n vectors.
 - iii) If $1 \le r \le n$ and $\{y_1, y_2, ..., y_r\}$ is an independent set in X, then show that X has a basis containing $\{y_1, y_2, ..., y_r\}$.
 - b) Define linear transformation and give an example.
- 14. a) Let Ω be the set of all invertible linear operators on \mathbb{R}^n . If $A \in \Omega, B \in L(\mathbb{R}^n)$, and $||B A|| \cdot ||A^{-1}|| < 1$, then prove that $B \in \Omega$.
 - b) Suppose E is an open set in Rⁿ, f maps E into R^m, f is differentiable at x₀ ∈ E, g maps an open set containing f(E) into R^k, and g is dirrerentiable at f(x₀). Then prove that the mapping F of E into R^k
 defined by F(x) = g(f(x)) is differentiable at x₀ and F'(x₀) = g'(f(x₀)f'(x₀)).

K19P1189

- **15.** a) Suppose f maps a convex open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m , f is differentiable in E and f'(x) = 0 for all $x \in E$, then prove that f is constant.
 - b) Suppose f maps an open set E ⊂ ℝⁿ into ℝ^m. Then prove that f ∈ C'(E) if and only if the partial derivatives D_jf_i exist and are continuous on E for 1 ≤ i ≤ m, 1 ≤ j ≤ n.