

0151063

K19P 1188

Reg. No. :

III Semester M.Sc. Degree (CBSS-Reg./Suppl./Imp.) Examination, October - 2019 (2017 Admission Onwards) Mathematics MAT 3C13 : COMPLEX FUNCTION THEORY

Time : 3 Hours

Max. Marks: 80

PART - A

Answer any Four questions. Each question carries 4 marks. (4×4=16)

- 1. Prove that an elliptic function without poles is a constant.
- 2. Derive the Legendre's relation $\eta_1\omega_2 \eta_2\omega_1 = 2\pi i$.
- 3. Can an analytic function on an arbitrary region be expressed as the limit of a sequence of polynomials? Justify your claim.
- 4. Define the terms function element, germ and analytic continuation along a path.
- 5. Let G be an open subset of C. If $u : G \to C$ is harmonic, prove that u is infinitely differentiable.
- 6. Define a subharmonic function. Also show that every harmonic function is subharmonic.

PART - B

Answer any Four questions without omitting any unit. Each question carries (4×16=64)

UNIT - I

7. a) Define the period module of a function f(z) which is meromorphic in the whole plane.

P.T.O.

K19P1188

- b) Prove that there exists a basis (w_1, w_2) such that the ratio $\tau = w_2 / w_1$ satisfies the following conditions:
 - i) Im τ > 0
 - ii) $-\frac{1}{2} < \operatorname{Re} \tau \leq \frac{1}{2}$
 - iii) $|\tau| \ge 1$
 - iv) Re $\tau \ge 0$ if $|\tau| = 1$

Show further that the ratio τ is uniquely determined by these conditions, and there is a choice of two, four, or six corresponding bases.

- 8. a) Prove that the zero $a_1, ..., a_n$ and poles $b_1, ..., b_n$ of an elliptic function satisfy $a_1 + ... + a_n \equiv b_1 + ... + b_n \pmod{M}$.
 - b) With usual motations, prove that the weierstrass P function satisfies the differential equation $P'(z)^2 = 4 P(z)^3 g_2 P(z) g_3$.
- 9. a) Define Riemann zeta function $\zeta(z)$ and prove that for Re z > 1,

$$\zeta(z) \Gamma(z) = \int_0^\infty \left(e^t - 1\right)^{-1} t^{3-1} dt.$$

- b) State and prove Euler's theorem.
- c) State the Riemann Hypothesis.

UNIT - II

- 10. State and prove Runge's theorem.
- 11. a) Let G be an open connected subset of . C If G is simply connected, prove that n(r, a) = 0 for every closed rectifiable curve r in G and every point a in C G.
 - b) State and prove Mittag Leffler's theorem.

(3)

- 12. a) State Schwarz reflection principle.
 - b) State and prove the monodromy theorem.
 - c) Let (f, D) be a function element which admits unrestricted continuation in a simply connected region G. Prove that there is an analytic function $F: G \rightarrow \mathbb{C}$ such that F(z) = f(z) for all z in D.

UNIT - III

- 13. a) State and prove the mean value theorem for harmonic functions.
 - b) Let G be a region and let u and v be continuous real valued functions on G that have the MVP. If for each point a in the extended boundary ∂_∞G, limsupu(z) ≤ lim inf v(z), then prove that either u(z) < v(z) for all z in G or u = v.
 - c) State the minimum principle for harmonic functions.
- 14. a) Define the poisson kernel $P_{r}(\theta)$. Prove that
 - i) $\int_{-\pi}^{\pi} P_r(\theta) = 2\pi$
 - ii) $P_r(\theta) > 0$ for all θ
 - b) Let $D = \{z : |z| < 1\}$ and suppose that $f : \partial D \to \mathbb{R}$ is a continuous function. Prove that there is a unique continuous function $uD^- \to \mathbb{R}$ such that
 - i) u(z) = f(z) for z in ∂D ;
 - ii) u is harmonic in D.
- 15. a) State and prove Harnack's theorem
 - b) Derive Jensen's formula.