

0150263

K19P 1186

Reg. No. :

Name :

III Semester M.Sc. Degree (CBSS-Reg./Suppl./Imp.) Examination, October - 2019 (2017 Admission Onwards) Mathematics MAT3C11 : NUMBER THEORY

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any Four questions. Each question carries 4 marks. (4×4=16)

- 1. Prove the following statement or exhibit a counter example: if F is multiplicative, then $F(n) = \frac{\prod}{d \mid n} f(d)$ is multiplicative.
- 2. If n > 1 and $(n 1)! + 1 \equiv 0 \pmod{n}$, then prove that n is a prime.
- 3. Find the quadratic residues and nonresidues module 13.
- 4. If P and Q are odd positive integers, then prove that (n | PQ) = (n|P) (n|Q).
- 5. State Newton's theorem on symmetric polynomials. Express the polynomial $t_1^3 + t_2^3$ in terms of elementary symmetric polynomial in t_1 , t_2 .
- 6. Show that an algebraic integer is a rational number if and only if it is a rational integer.

PART - B

Answer any Four questions without omitting any unit. Each question carries 16 marks. (4×16=64)

UNIT - I

- 7. a) State and prove the Euclidean algorithm.
 - b) Define Euler function $\varphi(n)$ and derive a product formula for. $\varphi(n)$.
 - c) Prove that $\varphi(n)$ is even for $n \ge 3$.

P.T.O.

K19P 1186

- 8. a) If f and g are multiplicative, prove that so is their Dirichlet product f * g.
 - b) Let f be multiplicative. Prove that f is completely multiplicative if and only if $f^{-1}(n) = \mu(n)$ f(n) for all $n \ge 1$.
 - c) With usual notations, prove that $\varphi^{-1}(n) = \frac{\pi}{P | n} (1-P)$.
- 9. a) Assume (a, m) = d and d|b. Prove that the linear congruence ax = b(mod m) has exactly d solutions modulo m.
 - b) Solve the congruence $25x \equiv 15 \pmod{120}$.
 - c) Let $P \ge 5$ be a prime and wirte $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{P} = \frac{r}{PS}$. Then prove that $P^3|r$ -s.

UNIT - II

- 10. a) State and prove the quadratic reciprocity law.
 - b) Determine whether 888 is a quadratic residue or nonresidue of the prime 1999.
- 11. a) Let p be an odd prime. Prove that there exists at least one primitive root mod p^{α} if $\alpha \ge 2$.
 - b) Given $m \ge 1$ where m is not of the form $m = 1, 2, 4, p^{\alpha}$ or $2p^{\alpha}$, where p is an odd prime. Prove that there are no primitive roots mod m.
- 12. a) Using the linear cipher $C \equiv 5P + 11 \pmod{26}$, encrypt the message NUMBER THEORY is EASY.
 - b) Decrypt the message FDHVDU ZDV JUHDV which was enciphered using the caesar cipher.
 - c) Solve the knapsack problem $118 = 4x_1 + 5x_2 + 10x_3 + 20x_4 + 41x_5 + 99x_6$.

UNIT - III

- 13. a) Prove that every subgroup H of a free abelian group G of rank n is free of rank s \leq n.
 - b) Let θ be a complex number satisfying a monic polynomial equation whose coefficients are algebraic integers. Them prove that θ is an algebraic integer.
- 14. a) Prove that every number field K possesses an integral basis, and the additive subgroup of the ring of integers of K is free abelian of rank n equal to the degree of K.
 - b) Compute an integral basis and discriminant of $Q(\sqrt{2},\sqrt{3})$.
- 15. a) Let d be a squarefree rational integer. Prove that the integers of Q(√d) are
 i) Z[√d] if d ≠ 1 (mod 4)
 ii) Z[1/2 + 1/2√d] if d = 1 (mod 4)
 b) Prove that the discriminant of Q(ζ), where ζ = e^{2πi/p}, p an odd prime
 - is $(-1)^{(p-1)/2} p^{p-2}$.