

K17P 1594

Reg. No. :

Name :

First Semester M.Sc. Degree (Regular) Examination, October 2017 (2017 Admission) MATHEMATICS MAT1C01 : Basic Abstract Algebra

Time : 3 Hours

Max. Marks: 80

PART – A

Answer four questions from this Part. Each question carries 4 marks.

- Let R be a finite commutative ring with unity. Show that every prime ideal is maximal.
- 2. Find the product of the polynomials f(x) = 4x 5 and $g(x) = 2x^2 4x + 2$ in

 $\mathbb{Z}_{8}[x]$

- 3. Show that a subgroup of a group G having index 2 is a normal subgroup of G.
- 4. Is $\{(2, 1), (3, 1)\}$ a basis for $\mathbb{Z} \times \mathbb{Z}$? Prove your assertion.
- 5. Prove that no group of order 20 is simple.
- 6. Is $\phi: \mathbb{Z}_{12} \longrightarrow \mathbb{Z}_3$ be a homomorphism such that $\phi(1) = 2$. Find Ker (ϕ) .

PART - B

Answer four questions from this Part without omitting any Unit. Each question carries 16 marks.

Unit – I

- 7. a) Define group action. Let X be a G-set and let $x \in X$. Then prove that $|Gx| = (G : G_x)$.
 - b) Prove that direct product of abelian groups is abelian.

P.T.O.

- 8. a) Show that every group of order 255 is cyclic.
 - b) Find all abelian groups (up to isomorphism) of order $2^3 \times 3 \times 5^2$.
- 9. a) State and prove Cauchy's Theorem for groups.
 - b) If m divides the order of a finite abelian group, then prove that G has a subgroup of order m.

Unit – II

- 10. a) Let D be an integral domain and let S = {(a, b)|a, b ∈ D, b ≠ 0}. Show that the relation on S defined by (a, b) ~ (c, d), if and only if ad = bc is an equivalence relation.
 - b) Let F be the collection of equivalence classes of the equivalence relation on S = {(a, b) | a, b ∈ D, b ≠ 0}, D is an integral domain, defined by (a, b) ~ (c, d), if and only if ad = bc. For [(a, b)] and [(c, d)] in F, prove the equations [(a, b)] + [(c, d)] = [(ad + bc, bd)] and [(a, b)] [(c, d)] = [(ac, bd)] are a well defined operation on F.
- 11. a) Let H be a subgroup of G and let N be a normal subgroup of G. Then prove that HN/N \simeq H/(H \cap N).
 - b) State Schreier theorem. Explain with an example.
- 12. a) Let $G \neq 0$ be a free abelian group with a finite basis. Then prove that every basis of G is finite and all bases of G have the same number of elements.
 - b) Show that a free abelian group contains no nonzero elements of finite order.

Unit – III

13. a) State Eisenstein criterion and prove that the polynomial

 $\varphi_n(x) = x^{p-1} + x^{p-2} + \ldots + x + 1 \text{ is irreducible over } \mathbb{Q} \text{ for any prime } p.$

- b) Let \u03c6 : R → R' be a ring homomorphism and let N be an ideal of R and N' be an ideal of R'.
 - i) Prove that $\phi(N)$ is an ideal of $\phi(R)$
 - ii) Prove that $\phi^{-1}(N')$ is an ideal of R
 - iii) Give an example of an ideal N such that $\phi(N)$ need not be an ideal of R'.

1

- 14. a) Prove that an ideal $(p(x)) \neq \{0\}$ of F[x] is maximal if and only if p(x) is irreducible.
 - b) i) Show that a factor ring of a field is either the trivial ring of one element or is isomorphic to the field.
 - ii) Show that if R is ring with unity and N is an ideal such that N ≠ R, then R/N is ring with unity.
- 15. a) If G is a finite subgroup of the multiplicative group ⟨F*,·⟩ of a field F, then prove that G is cyclic.
 - b) Prove that if F is a field, every proper non trivial prime ideal of F[x] is maximal.