

K17P 1595

Reg.	No). :	 	 	
Name	e ;		 	 	

First Semester M.Sc. Degree (Regular) Examination, October 2017 (2017 Admission) MATHEMATICS MAT 1C02 : Linear Algebra

Time: 3 Hours

Max. Marks: 80

PART-A

Answer four questions from this Part. Each question carries 4 marks.

- 1. Describe explicitly the linear transformation T from F² into F² such that $T_{\varepsilon_1} = (a, b), T_{\varepsilon_2} = (c, d)$.
- 2. Let F be the subfield of the complex numbers and T be the function from F³ into F³ defined as T(x₁, x₂, x₃) = (x₁ x₂ + 2x₃, 2x₁ + x₂, -x₁ 2x₂ + 2x₃), if (a, b, c) is a vector in F³. What are the conditions on a, b, c so that (a, b, c) is in the range of T ?
- 3. Let T be the unique linear operator on \mathbb{C}^3 for which $T\epsilon_1 = (1, 0, i)$, $T\epsilon_2 = (0, 1, 1)$, $T\epsilon_3 = (i, 1, 0)$ is T invertible.
- Let A and B be n×n matrices over the field F. Prove that if (I-AB) is invertible the I-BA is invertible and (I-BA)⁻¹ = I+B(I−AB)⁻¹A.
- 5. Let V be the vector space of all functions from \mathbb{R} to \mathbb{R} which are continuous. Let T be the linear operator on V defined by (Tf) (x) = $\int_{0}^{x} f(t) dt$. Prove that T has no characteristic values.
- Prove that an orthogonal set of non zero vectors in an inner product space is linearly independent.

K17P 1595

PART-B

Answer 4 questions from this Part without omitting **any** Unit. **Each** question carries **16** marks.

Unit – 1

- a) Let V and W be vector spaces over the field F and let T be a linear transformation from V into W. Suppose V is finite dimensional then prove that rank (T) + nullity(T) = dim V.
 - b) Let V be an n-dimensional vector space over the field F and let W be an m-dimensional vector space over the field F then prove that the space L(V, W) is finite dimensional and has dimension mn.
- a) Let g, f₁, ..., f_r be linear functional on a vector space V with respective null spaces N, N₁, N₂, ..., N_r then prove that g is a linear combination of f₁, ..., f_r iff N contains the intersection N ∩ N₁ ∩ N₂ ∩ ... ∩ N_r.
 - b) Let V and W be finite dimensional vector spaces over the field F. Let B be an ordered basis for V with dual basis B* and let B' be an ordered basis for W with dual basis B'*. Let T be a linear transformation from V into W; let A be the matrix of T relative to B, B' and let B be the matrix of T^t relative to (B'*, B*). Then prove that B_{ii}=A_{ii}.
- 9. a) Let V be a finite dimensional vector space over the field F and let $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ be an ordered basis for V. Let W be a vector space over the same field F and let $\beta_1, \beta_2, ..., \beta_n$ be any vector in W. Then prove that there is precisely one linear transformation T form V into W such $T\alpha_i = \beta_i, j=1,2,...,n$.
 - b) Let V and W be vector spaces over the field F and let T be a linear transformation from V into W. If T is invertible then prove that the inverse function T⁻¹ is a linear transformation from W onto V.

Unit-2

10. a) Let T be a linear operator on the finite dimensional space V. Let $c_1, c_2, ..., c_k$ be the distinct characteristic vector of T and let W_i be the space of characteristic vector associated with the characteristic value c_i . If $W = W_1 + W_2 + + W_k$, then prove that dimW = dimW₁ + dimW₂ ++ dim W_k.

b) Let the linear operator on \mathbb{R}^3 which is representation the standard ordered basis by the matrix.

 $A = \begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix}$ check whether T is diagonalizable or not.

- 11. a) Let V be a finite dimensional vector space over the field F. Let F be a commuting family of triangulable linear operators on V. Then prove that there exist an ordered basis for V such that every operator in F is represented by a triangular matrix in that basis.
 - b) Let V be a finite dimensional vector space over the field F and let T be a linear operator on V. Then prove that T is diagonalizable iff the minimal polynomial for T has the form P= (x c₁) (x c₂) (x c_k).
- Let T be a linear operator on a finite dimensional vector space V. If f is the characteristic polynomial for T, then prove that f(T) = 0.

Unit-3

- 13. a) Let T be a linear operator on a finite dimensional space V. If T is diagonalizable and c₁, c₂, ..., c_k be the distinct characteristic vector of T then prove that there exist linear operators E₁, E₂, ..., E_k on V such that
 - i) $E_i E_j = 0, i \neq j$
 - ii) E_i is a projection
 - iii) The range of E_i is the characteristic space for T associated with c_i.
 - b) State and prove Primary decomposition theorem.
- 14. State and prove cyclic decomposition theorem .
- 15. a) Let W be a finite dimensional subspace of an inner product space V and let E be the orthogonal projection of V on W. Then prove that E is a Idempotent linear transformation of V onto W, W[⊥] is the null space of E and V=W⊕ W[⊥].
 - b) Prove that every finite dimensional inner product space has an orthonormal basis.