

K21P 0240

Reg. No. : Name :

IV Semester M.Sc. Degree (CBSS – Reg/Suppl. (Including Mercy Chance)/Imp.) Examination, April 2021 (2017 Admission Onwards) Mathematics MAT 4C16 : DIFFERENTIAL GEOMETRY

LIBRAR

Time : 3 Hours

Max. Marks: 80

PART - A

Answer any four questions from this Part. Each question carries 4 marks.

- 1. Sketch typical level sets of the function $f(x_1, x_2) = x_1^2 x_2^2$.
- 2. Show that the graph of any function $f : \mathbb{R}^n \to \mathbb{R}$ is a level set for some function $F : \mathbb{R}^{n+1} \to \mathbb{R}$.
- 3. Find and sketch the gradient field of the function $f(x_1, x_2) = x_1x_2$.
- Show that the spherical image of an n-surface with orientation N is the reflection through the origin of the spherical image of the same n-surface with orientation – N.
- 5. Let S be an n-surface in \mathbb{R}^{n+1} , let $\alpha : I \to S$ be a parametrized curve in S. Let X and Y be smooth vector fields tangent to S along α . Show that $(X \cdot Y)' = X' \cdot Y + X \cdot Y'$.
- 6. Let $\alpha(t) = (x(t), y(t)), t \in I$ be a local parametrization of an oriented plane curve C. Show that k o $\alpha = (x'y'' - y'x'')/[(x')^2 + (y')^2]^{\frac{3}{2}}$.
- 7. Find the length of the parametrized curve $\alpha(t) = (t^2, t^3), t \in [0, 2]$.
- Let S be a compact connected oriented n-surface in Rⁿ⁺¹ whose Gauss-Kronecker curvature is nowhere zero. Show that the Gauss map is a diffeomorphism.

K21P 0240

PART - B

Answer any four questions from this part without omitting any Unit. Each question carries 16 marks.

UNIT-I

- 9. a) Find the integral curve through p = (0, 1) of the vector field $X(x_1, x_2) = (x_2, -x_1)$.
 - b) Let U be an open set in ℝⁿ⁺¹ and let f : U → ℝ be smooth. Let p ∈ U be a regular point of f and let c = f(p). Show that the set of all vectors tangent to f⁻¹(c) at p is equal to [∇f(p)][⊥].
- 10. a) Show that the unit n-sphere $x_1^2 + \ldots + x_{n+1}^2 = 1$ is an n-surface in \mathbb{R}^{n+1} .
 - b) Let S be an (n − 1)-surface in ℝⁿ. Show that the cylinder over S is an n-surface in ℝⁿ⁺¹.
- 11. a) State Lagrange Multiplier theorem.
 - b) Let a, b, $c \in \mathbb{R}$ be such that $ac b^2 > 0$. Show that the maximum and minimum values of the function $g(x_1, x_2) = ax_1^2 + 2bx_1x_2 + cx_2^2$ on the unit [a, b]

circle $x_1^2 + x_2^2 = 1$ are the eigen values of the matrix $\begin{bmatrix} a & b \\ b & c \end{bmatrix}$.

- 12. a) Let S be an n-surface in ℝⁿ⁺¹, let X be a smooth tangent vector field on S and let p ∈ S. Show that there exists a maximal integral curve of X through p ∈ S.
 - b) Prove that each connected n-surface in \mathbb{R}^{n+1} has exactly two orientations.

UNIT - II

- 13. Let S be a compact connected oriented n-surface in ℝⁿ⁺¹ exhibited as a level set f⁻¹(c) for some c ∈ ℝ of a smooth function f : ℝⁿ⁺¹ → ℝ with ∇f(p) ≠ 0 for all p ∈ S. Show that spherical image of S is the unit sphere Sⁿ.
- 14. a) Show that if $\alpha : I \to \mathbb{R}^{n+1}$ is a parametrized curve with constant speed then $\ddot{\alpha}(t) \perp \dot{\alpha}(t)$ for all $t \in I$.
 - b) Let S be an oriented n-surface in ℝⁿ⁺¹ with orientation N. Show that a parametrized curve α : I → S is a geodesic in S if and only if it satisfies the differential equation α + (α · N ∘ α)N ∘ α = 0.
 - c) Let S be an n-surface in \mathbb{R}^{n+1} . Show that the velocity vector field along a parametrized curve α in S is parallel if and only if α is geodesic in S.

-3-

- 15. a) Show that the Weingarten map is self-adjoint.
 - b) Let $f : \mathbb{R}^2 \to \mathbb{R}$ given by $f(x_1, x_2) = x_1^2 x_2^2$. Let p = (1, 1) and $v = (p, \cos\theta, \sin\theta)$. Compute $\nabla_v f$.
- 16. a) Define the local parametrization of an oriented plane curve.
 - b) Let C be an oriented plane curve and p ∈ C. Show that there exists a local parametrization of C containing p.
 - c) Show that local parametrizations of plane curves are unique upto isomorphism.

UNIT - III

- 17. a) Show that the unit speed global parametrization of a connected oriented plane curve is either one to one or periodic.
 - b) Let U be an open set in \mathbb{R}^{n+1} . Show that for each 1-form ω on U there exists unique functions $f_i : U \to \mathbb{R}$, i = 1, ..., n + 1, such that $\omega = \sum_{i=1}^{n+1} f_i dx_i$.
 - c) Show that the integral of an exact 1-form over a closed curve is zero.
- 18. a) Let S be the sphere $x_1^2 + \ldots + x_{n+1}^2 = r^2$, r > 0, oriented by the inward unit normal. Let $p \in S$ and $v \in S_p$ be a unit vector. Find the normal curvature of S at p in the direction v.
 - b) Show that on a compact oriented n-surface S in ℝⁿ⁺¹ there exists a point p such that the second fundamental form at p is definite.
- 19. a) Define a parametrized n-surface in $\mathbb{R}n+k$ (k \geq 0).
 - b) Give an example of a 2-surface in \mathbb{R}^4 .
 - c) Find the Gaussian curvature of the parametrized torus
 - $\phi(\theta, \phi) = ((a + b \cos \phi) \cos \theta, (a + b \cos \phi) \sin \theta, b \sin \phi), a, b \in \mathbb{R}.$
- 20. a) Let S be an n-surface in \mathbb{R}^{n+1} and let $p \in S$. Show that there exists an open set V about p in \mathbb{R}^{n+1} and a parametrized n-surface $\varphi : U \to \mathbb{R}^{n+1}$ such that φ is one to one map from U onto $V \cap S$.
 - b) State and prove inverse function theorem for n-surfaces.