

Reg. No. :

Name :

IV Semester M.Sc. Degree (C.B.S.S. – Reg./Suppl. (Including Mercy Chance)/Imp.) Examination, April 2021 (2017 Admission Onwards) MATHEMATICS MAT 4C 15 : Operator Theory

LIBRARY

Time: 3 Hours

Max. Marks: 80

PART – A

Answer four questions from this Part. Each question carries 4 marks.

- 1. Let X be a normed space and A be a bounded operator on X. If $k \in \sigma_a(A)$, then prove that there is a sequence $\{x_n\}$ in X with $||x_n|| = 1$ for every n such that $||(A kI)(x_n)|| \rightarrow 0$ as $n \rightarrow \infty$.
- Let X, Y and Z be normed spaces. If F ∈ BL(X, Y) and G ∈ BL(Y, Z) then prove that (GF)' = F'G', where F' denotes the transpose of the operator F.
- State true or false and justify. "Every weak convergence sequence in the dual of a normed space is weak* convergent."
- State true or false and justify. "Every finite dimensional normed space is reflexive."
- State true or false and justify. "Every continuous linear map on a normed space is compact."
- 6. Let A be unitary operator on a Hilbert space H. Then prove that ||A|| = 1.
- Prove that the numerical range of a bounded operator on a Hilbert space is bounded.
- Define Hilbert Schmidt operator on a separable Hilbert space and give an example.

K21P 0239

PART – B

Answer four questions from this Part without omitting any Unit. Each question carries 16 marks.

Unit – I

- Let X be a Banach space and A ∈ BL(X). Then prove that
 - A is invertible if and only if A is bounded below and the range of A is dense in X.
 - b) The set of all invertible operators is open in BL(X).
- 10. Let X be a Banach space over \mathbb{C} and $A \in BL(X)$. Then prove that
 - a) $\sigma_e(A) \subseteq \sigma_a(A) \subseteq \sigma(A)$.
 - b) $\sigma(A)$ is non-empty.
- 11. Let X and Y be normed spaces and $F \in BL(X, Y)$.
 - a) If X' is separable, then prove that X is separable.
 - b) Prove that $\|F'\| = \|F\| = \|F''\|$ and $F''J_X = J_YF$, where J_X and J_Y are the canonical embedding of X and Y into X'' and Y'' respectively.

12. Let X be a normed space.

- a) If X is finite dimensional, then prove that the weak convergence and norm convergence are the same.
- b) If X is separable, then prove that every bounded sequence in X' has a weak* convergent subsequence.

Unit – II

- 13. Let X be a normed space.
 - a) If X is reflexive, then prove that every bounded sequence in X has a weak convergent subsequence.
 - b) If X is uniformly convex and $\{x_n\}$ is a bounded sequence in X such that $||x_n|| \rightarrow 1$ and $||x_n + x_m|| \rightarrow 2$ as n, $m \rightarrow \infty$, then prove that $\{x_n\}$ is a Cauchy sequence.

- 14. Let X be a normed space.
 - a) If X is reflexive, then prove that its dual X' is also reflexive.
 - b) If X is Banach and uniformly convex, then prove that X is reflexive.
- 15. Let X and Y be normed spaces and $\mathsf{F}:\mathsf{X}\to\mathsf{Y}$ be linear.
 - a) Prove that F is a compact map if and only if for every bounded sequence {x_n} in X, {F(x_n)} has a subsequence which converges in Y.
 - b) If F is compact, then prove that F' is also a compact map.
- 16. Let X be a normed space and $A \in CL(X)$. Then prove that
 - a) The eigenspectrum and the spectrum of A are countable sets and zero is the only possible limit point of it.
 - b) $\sigma(A) = \sigma(A')$.

Unit – III

- 17. Let H be a Hilbert space and $A \in BL(H)$.
 - a) Prove that there is a unique $B \in BL(H)$ such that $\langle A(x), y \rangle = \langle x, B(y) \rangle$, for every $x, y \in H$. Can we drop the completeness of H? Justify.
 - b) If R(A) = H, then prove that A* is bounded below, where A* is the adjoint of A.
- 18. Let H be a Hilbert space over \mathbb{C} and $A \in BL(H)$.
 - a) If A is self-adjoint, then prove that $||A|| = \sup \{|\langle A(x), x \rangle| : x \in H, ||x|| \le 1\}$.
 - b) Prove that there are unique self adjoint operators B and C on H such that A = B + iC.
- 19. Let H be a Hilbert space over \mathbb{C} and $A \in BL(H)$.
 - a) Prove that $\sigma(A) = \sigma_a(A) \bigcup \{k : \overline{k} \in \sigma_a(A^*)\}$.
 - b) If A is a self-adjoint operator, then prove that $A^2 \ge 0$ and $A \le ||A||I$, where I is the identity operator on H.
- 20. Let H be a Hilbert space and A \in BL(H).
 - a) If A is compact, then prove that A* is also a compact operator.
 - b) If A is a Hilbert-Schmidt operator, then prove that A* is also a Hilbert-Schmidt operator.