

Reg. No. : Name :

III Semester B.Sc. Degree (CBCSS – Supplementary) Examination, November 2023 (2017 – 2018 Admissions) COMPLEMENTARY COURSE IN STATISTICS FOR GEOGRAPHY/ PSYCHOLOGY CORE 3C03STA : Probability and Distribution Theory

Time : 3 Hours

Max. Marks: 40

Instruction : Use of calculators and statistical tables are permitted.

PART – A (Short Answer)

Answer all the 6 questions.

- 1. Give the classical definition of probability.
- 2. State the addition theorem of probability for two events.
- 3. Define probability mass function (pmf).
- 4. Define mathematical expectation.
- 5. Give the conditions that normal distribution is a limiting case of binomial distribution.
- 6. Give any two applications of chi-square distribution.

PART – B (Short Essay)

Answer any 6 questions.

- 7. If A and B are independent events, then show that \overline{A} and \overline{B} are also
- independent.
- 8. State Bayes' theorem.

P.T.O.

(6×1=6)

K23U 3749

(6×2=12)

K23U 3749

9. If $p(x) = \begin{cases} \frac{x}{15}, & x = 1, 2, 3, 4, 5\\ 0, & \text{otherwise} \end{cases}$, find P(X = 1 or 2) and P(0.5 < X < 2.5/X > 1).

- 10. Check f(x) = 6x(1 x), 0 < x < 1 is a probability density function (pdf).
- 11. Four fair coins are tossed. Let X is the number of heads occur. Find the probability function of X and hence calculate the mean and standard deviation.
- 12. In a normal distribution 7% of the items are under 35 and 89% are under 63. Find the mean and standard deviation of the distribution.
- 13. Define t distribution and give its relation with F distribution.
- 14. Let X and Y be independent standard normal variates. State the distribution Answer any 4 questions. 15. Two unbit

- 15. Two unbiased dice are thrown. What is the probability that the sum thrown is (i) greater than 8, and (ii) neither 7 nor 11?
- 16. Given the pmf of a discrete random variable X as

 $f(x) = \begin{cases} Cx^2, & x = 1, 2, 3, 4 \\ 0, & \text{otherwise} \end{cases}$ Obtain the value of C and the distribution function

17. If the possible values of a random variable X are 0, 1, 2, ...

Show that $E(X) = \sum_{n=0}^{\infty} p(X > n)$.

- Obtain the mean and variance of Poisson distribution.
- 19. Define normal distribution. Give any four properties of normal distribution.
- 20. If X, and X₂ are independent chi-square random variables, each with one degrees of freedom. Find k such that $P(X_1 + X_2 > k) = \frac{1}{2}$.

 $(4 \times 3 = 12)$

K23U 3749

PART – D (Long Essay)

-3-

Answer any 2 questions.

(2×5=10)

21. State and prove Baye's theorem.

22. Given the following table.

x	-3	-2	-1	0	1	2	3
p(x)	0.05	0.10	0.30	0	0.30	0.15	0.10

Compute : (i) E(x), (ii) E(2x + 3), (iii) V(x) and (iv) V(2x + 3).

- 23. Derive the sampling distribution of sample variance s².
- 24. Fit a binomial distribution to the following data and calculate the theoretical frequencies.

X	0	1	2	3	4
f	28	62	46	210	4
			D'	.10	
		0		31 -	-
				9 1	
		.0	20	~ ~	2
	0	5	0	00	
	30	A	0	00	
~	80	A	00	O.F.	
0	80	A		O. P.Y.	1 NU