LICENSIS ED		

K22P 1605

Name :

Reg. No. :

I Semester M.Sc. Degree (CBSS – Reg./Sup./Imp.) Examination, October 2022 (2019 Admission Onwards) MATHEMATICS MAT1C05 : Differential Equations

Time : 3 Hours

Max. Marks: 80

PART - A

Answer four questions from this Part. Each question carries 4 marks.

- 1. Locate and classify the singular points of the differential equation : $x^{3}(x - 1)y'' - 2(x - 1)y' + 3xy = 0.$
- For the differential equation, 2xy" + (3 x)y' y = 0. Verify that the origin is a regular singular point.
- 3. Verify the identity.

 $\sin^{-1} x = xF\left(\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, x^2\right)$

- 4. Deduce the relation $\Gamma(n + 1) = n!$.
- 5. Show that $\frac{d}{dx}J_0(x) = -J_1(x)$.
- 6. If S is defined by the rectangle $|x| \le a$, $|y| \le b$, show that the function $f(x, y) = x \sin y + y \cos x$, satisfies the Lipschitz condition.

K22P 1605

PART – B

-2-

Answer four questions from this Part without omitting any Unit. Each question carries 16 marks.

Unit – I

- 7. Find the general solution of y'' + (x 3)y' + y = 0 near x = 2.
- 8. a) Solve by power series method : y' y = 0.
 - b) Determine whether x = 0 is an ordinary point or a regular singular point of the differential equation $2x^2y'' + 7x(x + 1)y' + 3y = 0$.
- 9. a) Express in the hypergeometric equation

$$(x - A) (x - B)y'' + (C + Dx)y' + Ey = 0$$

where $A \neq B$.

b) Find the general solution of the differential equation near the indicated singular point.

$$x(1-x)y^{*} + \left(\frac{3}{2}-2x\right)y' + 2y = 0$$
 at $x = 0$.

10. Derive the Rodrigues Formula for the Legendre equation.

11. Show that

a)
$$\frac{d}{dx} \left[x^{p} J_{p}(x) \right] = x^{p} J_{p-1}(x)$$

b) $J_{p+1}(x) = \frac{2p}{x} J_{p}(x) - J_{p-1}(x)$

-

K22P 1605

12. a) Find the general solution of the following system.

$$\frac{dx}{dt} = x + y$$
,
$$\frac{dy}{dt} = 4x - 2y$$

b) If the two solutions, $x = x_1(t)$, $y = y_1(t)$ and $x = x_2(t)$, $y = y_2(t)$ of the homogeneous system $\frac{dx}{dt} = a_1(t)x + b_1(t)y$, $\frac{dy}{dt} = a_2(t)x + b_2(t)y$ are linearly independent on [a, b] then prove that $x = c_1x_1(t) + c_2x_2(t)$, $y = c_1y_1(t)x + c_2y_2(t)$ is the general solution of the given system on the interval.

-3-

Unit - III

- 13. a) State and prove the Sturm separation theorem.
 - b) If q(x) < 0, and if u(x) is a non-trivial solution of u" + q(x)u = 0, then show that u(x) has atmost one zero.
- 14. a) Find the exact solution of the initial value problem y' = 2x(1 + y), y(0) = 0. Starting with $y_0(x) = 0$, calculate $y_1(x)$, $y_2(x)$, $y_3(x)$, $y_4(x)$.
 - b) Show that f(x, y) = xy, satisfies a Lipschitz condition on the rectangle a ≤ x ≤ b and c ≤ y≤ d.

15. State and prove Picard's theorem.