

K20U 1532

Reg. No. :

Name :

V Semester B.Sc. Degree (CBCSS – Reg./Sup./Imp.) Examination, November 2020 (2014 Admn. Onwards) CORE COURSE IN MATHEMATICS 5B05MAT : Real Analysis

LIBRARY

Time : 3 Hours

Max. Marks: 48

SECTION - A

(Answer all the questions. Each carries 1 mark)

- 1. Find all real x so that |x 1| < |x|.
- 2. Give two divergent sequences (x_n) and (y_n) such that $(x_n + y_n)$ is convergent.
- 3. State nth term test.
- 4. Show that $f(x) = \frac{1}{x}$, $\forall x$ is not uniformly continuous on $(0, \infty)$.

 $(4 \times 1 = 4)$

SECTION - B

(Answer any eight questions. Each carries 2 marks)

- 5. There does not exists a rational number r such that $r^2 = 2$. Prove.
- 6. For positive real numbers a and b, show that $\sqrt{ab} \le \frac{1}{2}(a+b)$, where equality occurring if and only if a = b.
- 7. Define infimum of a set. Find inf S if $S = \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$.

8. A sequence in $\mathbb R$ can have atmost one limit. Prove.

P.T.O.

K20U 1532

-2-

- 9. Prove that every Cauchy sequence is bounded.
- 10. If $\sum x_n$ and $\sum y_n$ are convergent, show that the series $\sum (x_n + y_n)$ is convergent.
- 11. Check the convergence of $\sum_{n=1}^{\infty} \frac{1}{n^p}$.
- 12. If $X = (x_n)$ is a decreasing sequence of real numbers with $\lim_{n \to \infty} x_n = 0$, and if the partial sums (s_n) of Σy_n are bounded, prove that the series $\Sigma x_n y_n$ is convergent.
- Let I be a closed bounded interval and let f: I → R be continuous on I. Show that the set f(I) = {f(x) : x ∈ I} is a closed bounded interval.
- Give an example to show that every uniformly continuous functions are not Lipschitz functions. (8×2=16)

SECTION - C

(Answer any four questions. Each carries 4 marks)

- State and prove Archimedean property of R.
- 16. If S is a subset of R that contains at least two points and has the property

If $x, y \in S$ and x < y, then $[x, y] \subseteq S$.

Show that S is an interval.

- 17. For C > 0, show that $\lim \left(C^{\frac{V_n}{n}} \right) = 1$.
- 18. Discuss the convergence of the Geometric series $\sum_{n=0}^{\infty} r^n$ for $r \in \mathbb{R}$.
- 19. If Σx_n is an absolutely convergent series in \mathbb{R} , show that any rearrangement Σy_k of Σx_n converges to the same value.
- 20. Let I be a closed bounded interval and let $f: I \to \mathbb{R}$ be continuous on I. Show 'that f is uniformly continuous on I. (4×4=16)

SECTION - D

(Answer any two questions. Each carries 6 marks)

- 21. a) Prove the existence of a real number x such that $x^2 = 2$.
 - b) If $a, b \in \mathbb{R}$, show that $||a| |b|| \le |a b|$.
- 22. a) State and prove Bolzano Weierstrass Theorem for sequences.
 - b) If $X = (x_n)$ is a bounded increasing sequence in \mathbb{R} , show that it converges and $\lim(x_n) = \sup\{x_n : n \in \mathbb{N}\}$.
- 23. a) State and prove D'Alembert ratio test.
 - b) Check the convergence of the series whose nth term is $\frac{(n!)^2}{(2n)!}$.
- 24. a) Let I be a closed bounded interval and let $f: I \to \mathbb{R}$ be continuous on I. If $\varepsilon > 0$, then there exists step functions $s_{\varepsilon}: I \to \mathbb{R}$ such that $|f(x) - s_{\varepsilon}(x)| < \varepsilon, \forall x \in I.$
 - b) Let $f(x) = x, \forall x \in [0, 1]$. Calculate the first few Bernstein polynomials for f.

(2×6=12)