

K20P 0116

IV Semester M.Sc. Degree (CBSS-Reg./Suppl./Imp.) Examination, April 2020 (2017 Admission Onwards) MATHEMATICS MAT 4C15 : Operator Theory

Time : 3 Hours

Max. Marks : 80

PART - A

(Answer any four questions from this Part. Each question carries 4 marks.)

- 1. Give an example of an operator A such that $\sigma_e(A)$ is a proper subset of $\sigma_a(A)$.
- 2. $x_n \xrightarrow{w} x$ and $k_n \rightarrow k$ in K then show that $k_n x_n \xrightarrow{w} kx$ in X.
- 3. Show that finite dimensional and strictly convex spaces are uniformly convex.
- 4. Define Rayleigh quotient of an operator.
- Let E be a measurable subset of R and H = L²(E). Fix z in L[∞](E) and define A(x) = zx, x ∈ H. Show that A is unitary if and only if |z| = 1.
- Let H be denote the Hilbert space of all doubly infinite square summable scalar sequences x = (x(j)), j = ..., -2, -1, 0, 1, 2, ... For x in H, let A(x)(j) = x (j 1) for all j. Then show that A is a unitary operator on H.

PART – B

(Answer any four questions from this Part without omitting any Unit. Each question carries 16 marks.)

UNIT-1

7. a) Let X a Banach space over K and A \in BL(X). Let k \in K such that $|k|^p > ||A^p||$

for positive integer p. Then prove that $k \notin \sigma(A)$ and $(A - kI)^{-1} = -\sum_{n=0}^{\infty} \frac{A^n}{k^{n+1}}$

and for every $k \in \sigma(A)$, $|k| \leq inf_{n=1, 2, ...} \|A^n\|^{\frac{1}{n}} \leq \|A\|$.

b) Define dual basis of a normed linear space and give an example.

P.T.O.

K20P 0116

8. a) Let $1 \le p \le \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$. Then prove that the dual of Kⁿ with the norm $||.||_p$ is linearly isometric to Kⁿ with the norm $||.||_q$.

-2-

- b) Let X, Y and Z be normed spaces. Let F_1 and F_2 be in BL(X, Y) and $k \in K$. Then prove that $(F_1 + F_2)' = F_1' + F_2'$ and $(kF_1)' = kF_1'$. Let $F \in BL(X, Y)$ and $G \in BL(Y, Z)$. Then prove also that (GF)' = F'G'.
- 9. a) Let X and Y be normed spaces and F ∈ BL(X, Y). Then prove that ||F'|| = ||F|| = ||F"|| and F"J_X = J_YF, where J_X and J_Y are the canonical embeddings of X and Y into X" and Y", respectively.
 - b) Let X be a normed space and $\{x_n\}$ be a sequence in X. Then prove that $\{x_n\}$ is weak convergent in X if and only if (i) (x_n) is a bounded sequence in X and (ii) there is some $x \in X$ such that $x'(x_n) \to x'(x)$ for every x' in some subset of X' whose span is dense in X'. In that case, also prove that for every subsequence (x_{nk}) of (x_n) , x belongs to the closure of $(\{x_{n1}, x_{n2}, cdots\})$ and $||x|| \leq \liminf_{n \to \infty} ||x_n||$.

UNIT - II

- a) Let X be a reflexive normed space. Then prove that every closed subspace of X is reflexive.
 - b) Let X and Y be normed spaces and F : X → Y be linear, compact map then prove that F(U) is a totally bounded subset of Y. Also prove that if Y is a Banach and F(U) is a totally bounded subset of Y, then F is a compact map.
 - c) Define reflexive spaces and give an example.
- 11. a) Let X and Y be normed spaces and F : X → Y be linear. Let F ∈ CL(X, Y), where CL(X, Y) denotes the set of all compact linear maps from a normed spaces X to a normed space Y. If x_n → X in X, then prove that F(x_n) → F(x) in Y.
 - b) Let X be a normed space and A \in CL(X). If X is finite dimensional, then prove that $0 \in \sigma_a(A)$.
- a) Give an example of a linear space which is not uniformly convex.
 - b) Let X be a normed space and A ∈ CL(X). Then prove that {k : k ∈ σ_e(A'), k ≠ 0} = {k : k ∈ σ_e(A), k ≠ 0}, where A' is the transpose of A.

UNIT – III

- 13. a) Let H be a Hilbert space. Consider A ∈ BL(H). Then prove that A is invertible if and only if A* is invertible and in that case (A*)⁻¹ = (A⁻¹)*.
 - b) Let H be a Hilbert space. Consider A ∈ BL(H). Then prove that the closure of R(A) equals Z(A*)[⊥] and closure of R (A*) equals Z(A)[⊥].
 - c) Let H be a Hilbert space. Consider A ∈ BL(H). Then prove that A is normal if and only if ||A(x)|| = ||A^{*}(x)|| for all x ∈ H. In that case prove that ||A²|| = ||AA^{*}|| = ||A||².
- 14. a) Let H be a Hilbert space. Let A and B be unitary. Then prove that AB is unitary.

Also, A + B is unitary if and only if it is surjective and Re $\langle A(x), B(x) \rangle = \frac{-1}{2}$ for every $x \in H$ with ||x|| = 1.

- b) State and prove Generalized Schwarz inequality.
- 15. a) Let H be a non-zero Hilbert space and A \in BL(H) be self adjoint. Then prove that {m_A, M_A} $\subset \sigma_a(A) \subset [m_A, M_A]$.
 - b) Let A be a compact operator on a Hilbert space H ≠ {0}. Then show that every non-zero approximate eigenvalue of A is, in fact, an eigenvalue of A and the corresponding eigenspace is finite dimensional.
 - c) Define Hilbert-Schmidt Operator and give an example.

 $(4 \times 16 = 64)$