

K24P 0320

Reg.	No.	:	
Name	· ·		

IV Semester M.Sc. Degree (C.B.S.S. – Reg./Supple. – (One Time Mercy Chance)/Imp.) Examination, April 2024 (2017 Admission Onwards) MATHEMATICS MAT4C16 : Differential Geometry

Time : 3 Hours

Max. Marks : 80

Answer four questions from this part. Each question carries 4 marks.

PART

 $(4 \times 4 = 16)$

- 1. Sketch the gradient vector field of the function $f(x_1, x_2) = x_1^2 + x_2^2$.
- 2. Sketch the graph of the function $f(x_1, x_2) = x_1^2 x_2^2$
- 3. Prove that $X + Y = \dot{X} + \dot{Y}$.
- 4. Define (i) Radius of Curvature (ii) Circle of Curvature, of a plane curve C.
- 5. Explain why unit speed curves are parametrized by arc length.
- 6. Find the length of the parametrized curve $\alpha(t) = (\sin t, \cos t, \sin t, \cos t)$ in [0, 2 π].

Answer four questions from this part without omitting any Unit. Each question carries 16 marks. (4×16=64)

PARTEBUE

Unit – I

- 7. a) Find the integral curve through (1, -1) of the vector field $X(x_1, x_2) = (x_1, x_2, -x_2, -\frac{1}{2}x_1).$
 - b) Show that the unit n sphere is an n surface in Rⁿ⁺¹.
 - c) Sketch the typical level curves for c = -1, 0, 1 and graph of the function $f(x_1, x_2) = x_1 x_2^2$.

K24P 0320

8. a) Prove the following : Lt S = $f^{-1}(c)$ be an n - surface in Rⁿ⁺¹, where $f: U \rightarrow R$ is such that $\nabla f(q) \neq 0$ for all $q \in S$, an let X be a smooth vector field on U whose restriction to S is a tangent vector field on S. If $\alpha: I \rightarrow U$ is any integral curve of X such that $\alpha(t_0) \in S$ for some t_0 in I, then $\alpha(t) \in S$ for all $t \in I$.

-2-

- b) Find the maximum value and minimum value of the function $g(x_1, x_2) = ax_1^2 + bx_2^2 + 2x_1x_2, x_1, x_2 \in R$ on the unit circle $x_1^2 + x_2^2 = 1$.
- c) Find the orientations on the cylinder $x_1^2 + x_3^2 = 1$ in \mathbb{R}^3 .
- 9. a) Find and sketch the gradient field of the function $f(x_1, x_2) = x_1^2 + x_2^2$.
 - b) i) Verify that a surface of revolution is a 2 surface.
 - ii) Sketch the surface of revolution obtained by rotating the curve $x_2 = 2$.
 - c) Show that graph of any function $f: \mathbb{R}^n \to \mathbb{R}$ is a level set for some function $F: \mathbb{R}^{n+1} \to \mathbb{R}.$

Unit – II

- 10. a) Prove the following : Let S be an n surface in \mathbb{R}^3 and $\alpha : I \to S$ be a geodesic in S with $\dot{\alpha} \neq 0$. Then a vector field X tangent to S along α is parallel along α if and only if both ||X|| and the angle between X and $\dot{\alpha}$ are constant along α .
 - b) Compute the Weingarton map for the circular cylinder $x_2^2 + x_3^2 = a^2$ in $R^{3}(a \neq 0).$
- 11. a) Prove the following :
- a) Prove the following : $\nabla_{v}(X + Y) = \nabla_{v}(X) + \nabla_{v}(Y) R UNIVERS$
 - ii) $\nabla_{y}(fX) = (\nabla_{y}f) X(p) + f(p)(\nabla_{y}X)$
 - iii) $\nabla_{u}(X,Y) = (\nabla_{u}X).Y(p) + X(p).(\nabla_{u}Y)$
 - b) With the usual notations, prove that $L_p(v).w = L_p(w).v$, $\forall v, w \in S_p$.
 - c) With the usual notations, prove that the parallel transport $P_{\alpha}: S_{p} \rightarrow S_{q}$ along α is a vector space isomorphism which preserves dot product.
- 12. a) Find the curvature of the plane curve $C = f^{-1}(0)$ oriented by the outward normal where $f(x_1, x_2) = x_2^2 - x_1$.
 - b) Show that i) $D_{y}(fX) = (\nabla_{y}f) X(p) + f(p)D_{y}X(p)$ ii) $\nabla_{y}(X,Y) = (D_{y}X).Y(p) + X(p).(D_{y}Y)$

Unit – III

-3-

13. a) Prove the following : Let η be the 1 – form on R² – {0} defined by

 $\eta = - \frac{x_2}{x_1^2 + x_2^2} + \frac{x_1}{x_1^2 + x_2^2}.$ Then for $\alpha : [a, b] \rightarrow \mathbb{R}^2 - \{0\}$ be any closed

piece wise smooth parametrized curve in $R^2 - \{0\}$, $\int_{\alpha} \eta = 2\pi k$.

- b) Find the Gaussian curvature of the surface $x_1^2 + x_2^2 x_3 = 0$ oriented by its outward normal.
- 14. a) Derive the formula for Gaussian curvature of an oriented n surface in Rⁿ⁺¹.
 - b) Prove the following : Let S be an n surface in Rⁿ⁺¹ and let $p \in S$. Then there exists an open set V about $p \in R^{n+1}$ and a parametrized n surface $\phi : U \to R^{n+1}$ such that ϕ is a one one map from U on to $S \cap V$.
- 15. a) Obtain a Torus as a parametrized surface in R³.
 - b) Prove the following : Let S be an n surface in Rⁿ⁺¹ and let f : S → R^k. Then f is smooth if and only if f o φ : U → R^k is smooth for each local parametrization φ : U → S.
 - c) Let V be a finite dimensional vector space with dot product and let L: V → V be a self adjoint linear transformation on V. Prove that there exist an orthonormal basis for V consisting of eigenvectors of L.

FILMUR UNIVERS