

K19P 0173

Reg. No. :

Name :

IV Semester M.Sc. Degree (Reg.) Examination, April 2019 (2017 Admission Onwards) MATHEMATICS MAT4C16 : Differential Geometry

Time : 3 Hours

Max. Marks: 80

PART – A

Answer any four questions. Each question carries 4 marks.

- 1. Define a vector field and illustrate it with an example.
- Let f: U → IR be a smooth function on U, U open in IRⁿ. Show that the graph of f is an n-surface in IRⁿ⁺¹.
- 3. Show that the spherical image of an n-surface S with orientation N is the reflection through the origin of the spherical image of S with orientation N.
- Find the velocity, the acceleration and the speed of the parametrized curve α(t) = (cost, sint, t).
- 5. Define length of a parametrized curve in IRⁿ⁺¹ and show that it is invariant under reparametrization.
- 6. Describe a parametrized torus in IR⁴.

 $(4 \times 4 = 16)$

PART – B

Answer any four questions without omitting any Unit. Each question carries 16 marks.

Unit – I

- 7. a) Let \mathbb{X} be a smooth vector field on an open set $U \subset \mathbb{R}^{n+1}$ and let $p \in U$. Prove the existence of the maximal integral curve of \mathbb{X} through p.
 - b) Sketch typical level curves and the graph of the function $f : \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x_1, x_2) = -x_1^2 + x_2^2$.

K19P 0173

- 8. a) Let U be an open set in ℝⁿ⁺¹ and let f: U → ℝ be smooth. Let p ∈ U be a regular point of f and let c = f(p). Prove that the set of all vectors tangent to f⁻¹(c) at p is equal to [∇ f(p)][⊥].
 - b) Let $f: U \to \mathbb{R}$ be a smooth function and let $\alpha: I \to U$ be an integral curve of ∇f .
 - i) Show that $\frac{d}{dt}(f_{0}\alpha)(t) = \|\nabla f(\alpha(t))\|^{2}$ for all $t \in I$.
 - ii) Show that for each $t_0 \in I$, the function f is increasing faster along α at $\alpha(t_0)$ then along any other curve passing through $\alpha(t_0)$ with the same speed.
- 9. a) State and prove the Lagrange multiplier theorem.
 - b) Prove that each connected n-surface in IRⁿ⁺¹ has exactly two orientations.
 - c) Define an oriented n-surface. Give an example of an "unoriented 2-surface" with justification.

Unit – II

- 10. a) Prove that for a compact connected oriented n-surface S in \mathbb{R}^{n+1} with $S = f^{-1}(c), f : \mathbb{R}^{n+1} \to \mathbb{R}$ is a smooth function with $\nabla f(p) \neq 0$ for all $p \in S$, the Gauss map $N : S \to S^n$ is onto.
 - b) Prove that geodesics have constant speed.
- 11. a) Let S be an n-surface in \mathbb{R}^{n+1} , let $\alpha : I \to S$ be a parametrized curve in S, let $t_0 \in I$ and let $\mathbb{V} \in S_{\alpha(t_0)}$. Prove that there exists a unique vector field \mathbb{V} tangent to S along α , which is parallel and has $\mathbb{V}(t_0) = \mathbb{V}$.
 - b) Let S be an n-surface in \mathbb{R}^{n+1} , let $\alpha : I \to S$ be a parametrized curve and let \mathbb{X} and \mathbb{Y} be vector fields tangent to S along α . Verify that
 - i) $(\mathbb{X} + \mathbb{Y})' = \mathbb{X}' + \mathbb{Y}'$ and
 - ii) $(f \mathbb{X})' = f' \mathbb{X} + f \mathbb{X}'$

for all smooth function f along α .

- 12. a) Prove that the Weingarten map is self-adjoint.
 - b) Define a local parametrization of plane curve. Find a global parametrization of the curve oriented by $\nabla f / || \nabla f ||$ where f is the function defined by the left side of the equation $ax_1 + bx_2 = c$, (a, b) \neq (0, 0).

K19P 0173

Unit – III

- 13. a) On each compact oriented n-surface S in IRⁿ⁺¹, prove that there exists a point p such that the second fundamental form at p is definite.
 - b) Define a differential 1-form. Prove that for each 1-form W on U(U open in \mathbb{R}^{n+1}) there exist unique functions $f_i : U \to \mathbb{R}$, i = 1, 2, ..., n + 1 such that $W = \sum_{i=1}^{n+1} f_i dx_i$.
- 14. a) Find the Gaussian curvature of the ellipsoid $(x_1^2 / a^2) + (x_2^2 / b^2) + (x_3^2 / c^2) = 1$ (a, b, c all $\neq 0$) oriented by its outward normal.
 - b) Let ψ be the parametrized torus in \mathbb{R}^3 :

 $\psi(\theta, \phi) = ((a + b \cos \phi) \cos \theta, (a + b \cos \phi) \sin \theta, b \sin \phi)$

Find its Gaussian curvature.

15. a) Define an n-surface S in \mathbb{R}^{n+k} (k \ge 1). With usual notations express S in the form $S = \bigcap_{i=1}^{k} f_i^{-1}(c_i)$. Define the tangent space S_p at $p \in S$ and the normal space to S at p. Illustrate a 1-surface in \mathbb{R}^3 with its tangent space and normal

space at a point p.

b) State and prove the inverse function theorem for n-surfaces.

 $(4 \times 16 = 64)$