	ATS AND SCIENCE
Reg. No. :	of the second
Name :	C LIBRARY
	A CARLER AND A CARLE

K21P 0783

Il Semester M.Sc. Degree (CBSS – Reg./Suppl. (Including Mercy Chance)/ Imp.) Examination, April 2021 (2017 Admission Onwards) MATHEMATICS MAT 2C 06 : Advanced Abstract Algebra

Time : 3 Hours

Max. Marks: 80

PART - A

Answer any 4 questions. Each question carries 4 marks :

- 1. Argue that $\mathbb{Z}[x]$ is a UFD.
- 2. Find all the units in $\mathbb{Z}[i]$.
- 3. Find $irr(\sqrt{2-i\sqrt{2}}, \mathbb{Q})$. Justify your claim.
- Prove that every finite field has pⁿ elements for some prime p and a positive integer n.
- 5. Prove that if $\alpha, \beta \in \overline{F}$ are both separable over F, then $\alpha + \beta$ is separable over F.
- 6. Describe the group of the polynomial $x^4 1$ over \mathbb{Q} .

$(4 \times 4 = 16)$

PART – B

Answer 4 questions without omitting any Unit. Each question carries 16 marks :

Unit – I

- a) If D is a PID, prove that every element in D which is neither zero nor a unit in D is a product of irreducibles.
 - b) Let D be a UFD, F be a field of quotients of D and let f(x) ∈ D[x] be an irreducible in D[x] with degree of f(x) > 0. Prove that f(x) is irreducible in F[x] also.

7

9

		10
K21P 0	-2-	II
8. a)	State and prove the Euclidean algorithm. 1	0
	Illustrate the Euclidean algorithm on ${\mathbb Z}$ by computing the gcd of 12, 249	6
9. a)	Let p be an odd prime in \mathbb{Z} . Prove that $p = a^2 + b^2$ for some integers a and b if and only if $p \equiv 1 \pmod{4}$.	4
b)	Prove that there exist an extension field of \mathbb{Q} containing a zero of $x^3 + 3x^2 + 6x + 15$.	2
	Unit – II	
10. a)	Prove that every finite extension is an algebraic extension.	5
	Prove that the field $\mathbb C$ of complex numbers is algebraically closed.	5
c)		6
11. a)	Prove that if α and β are constructible real numbers, then α β is also constructible.	4
b)) Prove that squaring the circle is impossible.	4
C)	Prove that if F is a finite field and n is any positive integer, then there exist irreducible polynomials of degree n is F[x].	8
12. a) State and prove conjugation isomorphism theorem.	10
) Describe all automorphisms of the field $\mathbb{Q}(\sqrt{2}, \sqrt[3]{2})$.	6
	Unit – III	
	b) Let E be a finite extension of F, σ be an isomorphism of F onto a field F' and let F' be an algebraic closure of F'. Prove that the number of extensions of σ to an isomorphism of E onto a subfield of F' is finite and independent of σ, F' and F'.	8
b	Prove that if F ≤ E ≤ K, where K is a finite extension of F, then {K : F} = {K : E} {E : F}.	4
c c) Prove that $\mathbb{Q}(\sqrt[4]{2})$ is not a splitting field extension of \mathbb{Q} .	4

			-3-	K21P 0783	
14. a		a)	Prove that every f	inite field is perfect.	10
		b)	Give an example extension of F.	of an extension F \leq E, where E is	s not a separable 6
3	15.	a)	Define (finite) nor	mal extension of a field.	2
		b)	Let K be a finite n	ormal extension of F and F \leq E \leq	≤ K. Prove that
			i) K is a normal e	extension of E.	
			ii) E is a normal e normal subgro	extension of F if and only if the Ga oup of G(K/F).	lois group G(K/E) is a
			iii) [K : E] = G(K/	Έ) .	(3+8+3)