

K22U 2320

Max. Marks: 48

Reg. No.:

Name :

V Semester B.Sc. Degree (CBCSS - OBE - Regular/Supplementary/ Improvement) Examination, November 2022 (2019 Admission Onwards) CORE COURSE IN MATHEMATICS 5B05MAT : Set Theory, Theory of Equations and Complex Numbers

LIBRARY

Time: 3 Hours

PART-A

Answer any four questions from this Part. Each question carries one mark.

- 1. Give an example of a countable set.
- 2. Explain Descartes rule of signs.
- 3. If f(x) = 0 is an equation of odd degree, then it has at least one root.
- 4. Say true or false. "Zero is a complex number".
- 5. Find the conjugate of 6 5i.

PART-B

Answer any eight questions from this Part. Each question carries two marks.

6. Define a denumerable set, give an example.

- 7. If α , β , γ are the roots of $2x^3 + x^2 2x 1 = 0$, find
 - i) $\alpha + \beta + \gamma$
 - ii) αβγ
 - . iii) $\alpha\beta + \beta\gamma + \alpha\gamma$.

K22U 2320

-2-

- 8. Search for rational roots of $f(x) = 2x^3 5x^2 + 5x 3 = 0$.
- 9. Show that $x^5 2x^2 + 7 = 0$ has at least two imaginary roots.
- 10. Transform the equation $x^3 6x^2 + 5x + 12 = 0$, into an equation lacking second term.
- 11. Show that if x = 1 + 2i, then $x^2 2x + 5 = 0$.
- 12. Find the módulus and amplitude of $\sqrt{3}$ i.
- 13. Express $\frac{1+i}{2+3i}$ in the form of X + iY.
- 14. A) The solution of a reciprocal equation of first type depends on that of an reciprocal equation of first type and of _____ degree.
 - B) The solution of a reciprocal equation of first type and of degree 2 m depends on that of an equation of degree _____.
- 15. Find the roots of $2x^3 + 3x^2 1 = 0$.
- 16. A) Write the standard form of a cubic equation.
 - B) What is reciprocal equation ?

PART-C

Answer any four questions from this Part. Each question carries four marks.

- 17. Show that the set $E_n = \{2n : n \in \mathbb{N}\}$ of even natural numbers is countably infinite.
- 18. If α , β , γ are the roots of $x^3 + P_1x^2 + P_2x + P_3 = 0$ then find the equation whose roots are α^3 , β^3 , γ^3 .
- 19. Find an upper bound and lower bound for the limit to the roots of $f(x) = 3x^4 61x^3 + 127x^2 + 220x 520 = 0.$
- 20. Solve the reciprocal equation, $x^4 8x^3 + 17x^2 8x + 1 = 0$.

K22U 2320

- -3-
- 21. Find the points of Q₁, Q₂, Q₃ representing the values of $\sqrt[3]{z}$ where $z = \sqrt{5} + i\sqrt{3}$.

- 22. A) Define nth root of unity.
 - B) Define Principal nth root of unity.
- 23. Explain the behaviour of roots of the equation $ax^3 + 3bx^2 + 3cx + d = 0$, with respect to discriminant.

PART-D

Answer any two questions from this Part. Each question carries six marks.

24. State and prove Cantor's theorem.

25. i) Find the condition that the sum of two roots of α,β of

 $x^4 + p_1 x^3 + p_2 x^2 + p_3 x + P_4 = 0$, may be zero.

- ii) Use the result to find the roots of the equation, whose roots are the six values of $\frac{1}{2}(\alpha + \beta)$, where α , β are any roots of $ax^4 + 4bx^3 + 6cx^2 + 4dx + e = 0$.
- 26. If α , β , γ are the roots of $ax^3 + 3bx^2 + 3cx + d = 0$, then find the equation whose roots are squares of the difference of the roots.
- 27. Define multiplication and division of two complex numbers.