

Time : 3 Hours

Max. Marks: 48

PART – A

Answer any four questions. Each question carries one mark.

1. Show that $f(x) = x^2$ defined on [0, 3] is uniformly continuous.

- 2. Define Riemann integral of a function f over [a, b].
- 3. Test the convergence of the integral $\int_{0}^{1} \frac{1}{1-x} dx$.
- 4. Show that $\beta(m, n) = \beta(n, m)$.
- 5. Define a metric on a set S.

PART – B

Answer any eight questions. Each question carries two marks.

- 6. Let $f : A \to \mathbb{R}$ is a Lipschitz function. Show that f is uniformly continuous on A.
- If f and g are increasing functions on A, then show that f + g is an increasing function on A.
- 8. If $f \in R[a, b]$, then prove that f is bounded on [a, b].
- 9. Show that every constant function on [a, b] is Riemann integrable.

10. If f, $g \in R[a, b]$, and $f(x) \leq g(x)$ for all $x \in [a, b]$, then prove that $\int f \leq \int g$.

P.T.O.

K22U 0413

11. Evaluate $\int_{0}^{3} \frac{1}{(x-1)^{3/2^{2}}} dx$.

12. Test the convergence of the integral $\int_{1}^{\infty} \frac{\sin^2 x}{x^2} dx$.

- 13. Show that $\beta(p, q) = \int_{0}^{\pi/2} \sin^{2p-1} \theta \cos^{2q-1} \theta d\theta$.
- 14. Let S be a nonempty set. For s, $t \in S,$ define
 - $d(s, t) = \begin{cases} 1 & \text{if } s \neq t \\ 0 & \text{if } s = t \end{cases}$

Show that d is a metric on S.

- 15. Let $f_n(x) = x + \frac{1}{n}$ for $x \in \mathbb{R}$ and $n \in \mathbb{N}$. Show that f_n converges to f(x) = x uniformly on \mathbb{R} .
- 16. Find the radius of convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n!} x^n$.

Answer any four questions. Each question carries four marks.

- Let I be a closed bounded interval and let f : I → R be continuous on I, then show that f is uniformly continuous on I.
- 18. Suppose $f : [a, b] \rightarrow \mathbb{R}$ is continuous on [a, b]. Show that $f \in \mathcal{R}[a, b]$.
- 19. Suppose g ∈ R[a, b] and f(x) = g(x) except for a finite number of points on [a, b]. Show that f ∈ R[a, b] and ∫_a^b f = ∫_a^b g.
 20. Show that Γn . Γ (1 n) = π/sin nπ.
 21. Evaluate Γ(1/2) and Γ(-1/2).
- 22. Evaluate $\int_{-1}^{1} \frac{dx}{x^{2/3}}$.
- Let f_n(x) = xⁿ for x ∈ [0, 1] and n ∈ N. Find a function g(x) in [0, 1] such that f_n converges to g pointwise on [0, 1].

PART – D

Answer any two questions. Each question carries 6 marks.

- 24. Let I ⊂ R be an interval, f : I → R be strictly monotone and continuous on I. Show that the function g inverse to f is strictly monotone and continuous on J = f(I).
- 25. State and prove Cauchy Criterion for Riemann integrability.
- 26. a) Show that $\int_{0}^{\infty} \frac{1}{x^{p}} dx = \begin{cases} \frac{1}{p-1} & \text{if } p > 1\\ \infty & \text{if } p < 1 \end{cases}$ b) Show that $\beta(m, n) = \frac{\Gamma m \cdot \Gamma n}{\Gamma(m+n)}$.
- 27. Let f_n be a sequence of functions in $\mathcal{R}[a, b]$ and f_n converges uniformly on [a, b] to f. Show that $f \in \mathcal{R}[a, b]$ and $\int_a^b f = \lim_{n \to \infty} \int_a^b f_n$.