K24U 1619

Reg. No.:	•••
Name :	

Second Semester B.Sc. Degree (CBCSS – OBE-Regular/Supplementary/ Improvement) Examination, April 2024 (2019 Admission Onwards) CORE COURSE IN MATHEMATICS 2B02 MAT : Integral Calculus and Logic

Time : 3 Hours

Max. Marks: 48

UNIT-1

Short answer type. Answer any 4 questions. Each question carries 1 mark.

 $(4 \times 1 = 4)$

- 1. Define hyperbolic cosine of x.
- 2. Write the equation of the circle of radius |a| centered at O in polar co-ordinates.

3. Find the Cartesian equivalent of the Polar equation r cos θ = 2.

- 4. Define a statement.
- 5. What you mean by a contingency ?

UNIT - II

Short essay type. Answer any 8 questions. Each question carries 2 marks. (8×2=16)

- 6. Prove that $\cosh^2 x \sinh^2 x = 1$.
- 7. Integrate log x.
- 8. Find the Cartesian equivalent to the polar equation $r \cos\left(\theta \frac{\pi}{4}\right) = \sqrt{2}$.
- 9. Evaluate $I = \int \int xy(x y) dx dy$.
- 10. Find the area bounded between the curve $y = x^2$ above the x-axis and below the line y = 2.

P.T.O.

K24U 1619

- Define the error of approximation.
- 12. Write the formula using in Simpson's 1/3 rule of integration.
- Find the conjunction of the propositions p and q where p is the proposition
 "Today is Friday" and q is the proposition "It is raining today".

-2-

- 14. Let $a \ge 0$ be a real number. If for every $\varepsilon > 0$, we have $0 \le a < \varepsilon$, then prove that a = 0.
- 15. Prove that the square of an odd integer is also an odd integer.
- 16. Examine that the following argument is valid : $p, p \rightarrow q \vdash q$.

UNIT - III

Essay type. Answer any 4 questions. Each question carries 4 marks.

 $(4 \times 4 = 16)$

- 17. Evaluate J coth 5xdx.
- 18. Show that $\int \frac{\sin^4 x}{\cos^2 x} dx = \frac{\sin^3 x}{\cos x} + \frac{3}{2} \sin x \cos x \frac{3}{2}x.$
- 19. Evaluate $\iint_{S} (x^2 + y^2) dx dy$ over the region S in which $x \ge 0$; $y \ge 0$ and $x + y \le 1$.
- 20. Find the volume of $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
- 21. Evaluate $\int_{0}^{2} \frac{dx}{x^{2} + 2x + 10}$. Using Simpson's rule with n = 2, 4. Compare with the exact solutions.
- 22. Show that $\neg(p \lor q)$ and $\neg p \land \neg q$ are logically equivalent.
- 23. Show that the hypothesis " If you send me an e-mail message, then I will finish writing the program," " If you do not send me an e-mail message, then I will go to sleep early," and "If I go to sleep early, then I will wake up feeling refreshed" lead to the conclusion "If I do not finish writing the program, then I will wake up feeling refreshed."

K24U 1619

UNIT - IV

-3-

Long essay type. Answer any 2 questions. Each question carries 6 marks. (2×6=12)

- 24. If $U_n = \int_{0}^{\pi/2} \theta \sin^n \theta d\theta$ and n > 1, prove that $U_n = \frac{1}{n^2} + \frac{n-1}{n} U_{n-2}$. Deduce that $U_5 = \frac{149}{225}$.
- 25. Use triple integration in cylindrical coordinates to find the volume and the centroid of the solid G that is bounded above by the hemisphere $z = \sqrt{25 x^2 y^2}$, below by the xy-plane, and laterally by the cylinder $x^2 + y^2 = 9$.
- 26. Evaluate $\int_0^1 \frac{dx}{3+2x}$, using trapezoidal rule with n = 2, 4. Compare with the exact solution. Find the bound on the error. Also, find the number of sub-intervals required if the error is to be less than 5×10^{-4} .
- 27. Prove that the following argument is valid : $p \rightarrow -q$, $r \rightarrow q$, $r \rightarrow q$, $r \rightarrow p$.