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1 INTRODUCTION

In ring theory, a branch of abstract algebra an ideal of
ring is a special subset of its element.Ernst Kummer
invented the concept of ideal numbers to serve as the
”missing” factors in number ring in which unique
factorisation fails.

Ideals generalize certain subsets of the integers, such
as the even numbers or the multiples of 3. Addition
and subtraction of even numbers preserves evenness,
and multiplying an even number by any integer (even
or odd) results in an even number; these closure and
absorption properties are the defining properties of an
ideal. An ideal can be used to construct a quotient ring
in a way similar to how, in group theory, a normal
subgroup can be used to construct a quotient group.
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2 PRELIMINARIES

2.1 GROUP

A group is a finite or infinite set of elements
together with a binary operation (called the
group operation) that together satisfy the four
fundamental properties of closure,
associativity, the identity property, and the
inverse property.

2.1.1 Example1

(Z+) is a group:

Associativity: Let a,b,c ∈ Z. Then
(a+b)+c=a+b+c=a+(b+c) So Z+ is associative.

Identity: Let a ∈ Z. Then let e be an element of
Z such that a+e=e+a=a. Logically, this means
that e=0. So 0 is the identity element of Z
under addition.

Inverse: Let a ∈ Z . Then there exist an
element −a such that a+−a=−a+a=e.Therefore
− a is the inverse element of a.
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We have proved all three properties; therefore,
the ordered pair (Z+) is a group.

2.2 SUBGROUP

A subgroup is a subset of a group that itself is
a group. That means, if H is a non-empty
subset of a group G, then H is called the
subgroup of G if H is a group.

2.2.1 Example1

subgroups of Z6 are 〈 0 〉, 〈 3 〉, 〈 2 〉, and Z6.

2.3 RING

A ring is a set having an addition that must
be commutative (a + b = b + a for any a, b)
and associative [a + (b + c) = (a + b) + c for any
a, b, c], and a multiplication that must be
associative [a(bc) = (ab)c for any a, b, c]. There
must also be a zero (which functions as an
identity element for addition), negatives of all
elements (so that adding a number and its
negative produces the ring’s zero element),
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and two distributive laws relating addition
and multiplication [a(b + c) = ab + ac and (a +
b)c = ac + bc for any a, b, c]. A commutative
ring is a ring in which multiplication is
commutative—that is, in which ab = ba for
any a, b.

2.3.1 Example1

The simplest example of a ring is the
collection of integers (. . . , 3, 2, 1, 0, 1, 2, 3,
. . . ) together with the ordinary operations of
addition and multiplication.

2.4 SUBRING

A subring S of a ring R is a subset of R which
is a ring under the same operations as R.
Equivalently: The criterion for a subring. A
non-empty subset S of R is a subring if a, b ∈
S implies that a - b, ab ∈ S. So S is closed
under subtraction and multiplication.

2.4.1 Example1

2Z = 2n — n ∈ Z is a subring of Z

10



2.5 FUNCTION

Let A and B be two sets. A binary relation f
from A to B is called a function (or mapping)
from A to B if each element of A is related to
exactly one element of B.

2.6 KERNEL

The kernel is the set of all elements in G
which map to the identity element in H. It is a
subgroup in G and it depends on f. Different
homomorphisms between G and H can give
different kernels. If f is an isomorphism, then
the kernel will simply be the identity element.

2.6.1 Example1

Let G be the cyclic group on 6 elements 0, 1,
2, 3, 4, 5 with modular addition, H be the
cyclic on 2 elements 0, 1 with modular
addition, and f the homomorphism that maps
each element g in G to the element g modulo
2 in H. Then ker f = 0, 2, 4 , since all these
elements are mapped to 0H.

11



2.7 RING HOMOMORPHISM

A ring homomorphism is a function f : R → S
satisfying f(x + y) = f(x) + f(y) and f(xy) = f(x)f(y).
That is, it is a semigroup homomorphism for
multiplication and a group homomorphism
for addition.

2.7.1 Example1

The mapping from n-square matrices to
m-square matrices for m > n which adds to a
matrix m−n rows and columns of zero.

2.8 ISOMORPHISM

A group isomorphism is a function between
two groups that sets up a one-to-one
correspondence between the elements of the
groups in a way that respects the given group
operations. If there exists an isomorphism
between two groups, then the groups are
called isomorphic.

2.8.1 Example1

The group ( R , + ) ( R ,+) is isomorphic to the

12



group ( C ,+) ( C ,+) of all complex numbers
under addition

2.9 INTEGRAL DOMAIN

An integral domain is a commutative ring
with an identity (1 0) with no zero-divisors.
That is ab = 0 a = 0 or b = 0.

2.9.1 Example1

The ring Z is an integral domain

2.9.2 Example2

If a, b are elements of a field with ab = 0 then
if a 0 it has an inverse a-1 and so multiplying
both sides by this gives b = 0. Hence there are
no zero-divisors and we have: Every field is an
integral domain.

2.10 COMMUTATIVE RING

A commutative ring is a ring R in which
multiplication is commutative—that is, in

which ab = ba for any a, b R

13



2.10.1 Example1

1. Z, Q, R,C are commutative rings.
2. Z=(a+bi: a,b Z)is a commutative ring
3. Z is a commutative ring.

2.11 FIELD

A field is a set F together with two binary
operations on F called addition and
multiplication.[1] A binary operation on F is a
mapping F × F → F, that is, a correspondence
that associates with each ordered pair of
elements of F a uniquely determined element
of F.satisfy the following property :

Associativity of addition and multiplication: a
+ (b + c) = (a + b) + c, and a (b c) = (a b) c.

Commutativity of addition and multiplication:
a + b = b + a, and a b = b a.

Additive and multiplicative identity: there
exist two different elements 0 and 1 in F such
that a + 0 = a and a 1 = a.

14



Additive inverses: for every a in F, there exists
an element in F, denoted a, called the additive
inverse of a, such that a + (a) = 0.

Multiplicative inverses: for every a 0 in F,
there exists an element in F, denoted by a1 or
1/a, called the multiplicative inverse of a,
such that a a1 = 1.

Distributivity of multiplication over addition:
a (b + c) = (a b) + (a c).

2.11.1 Example1

The set of real numbers, denoted ”R”, together
with the regular addition (+) and
multiplication (*) arithmetic operations is a
field. Assuming we already know it is a ring
(i.e., it’s closed and associative under both
operations, commutative under addition, has
additive and multiplicative identities, and has
additive inverses)
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2.12 HOMOMORPHISM

A homomorphism is a map between two
algebraic structures of the same type (that is
of the same name), that preserves the
operations of the structures. This means a
map f : A → B f:A → B between two sets
AA,BB equipped with the same structure such that, if

· · is an operation of the structure (supposed
here, for simplification, to be a binary
operation) , then
f (x · y)=f(x) · f(y)f (x · y)=f(x) · f(y)

2.13 CONSTANT FUNCTION

A constant function is a function which takes
the same value for f(x) no matter what x is.
When we are talking about a generic constant
function, we usually write f(x) = c, where c is
some unspecified constant. Examples of
constant functions include f(x) = 0, f(x) = 1,
f(x) = , f(x) = 0.

16



2.14 COSET

A subgroup H of a group G may be used to
decompose the underlying set of G into
disjoint, equal-size subsets called cosets.
There are left cosets and right cosets. Cosets
have the same number of elements as does H.
Furthermore, H itself is both a left coset and a
right coset.

gH = gh : h an element of H for g in G

Hg = hg : h an element of H for g in G.

2.14.1 Example1

Let G be the additive group of the
integers,Z = (..., 2, 1, 0, 1, 2, ...,+) and H the
subgroup (3Z,+) = (..., 6, 3, 0, 3, 6, ...,+). Then
the cosets of H in G are the three sets 3Z, Z +
1, and 3Z + 2, where
3Z + a = ..., 6 + a, 3 + a, a, 3 + a, 6 + a, .... These
three sets partition the set Z, so there are no
other right cosets of H. Due to the
commutivity of addition H + 1 = 1 + H and H +

17



2 = 2 + H. That is, every left coset of H is also
a right coset, so H is a normal subgroup. (The
same argument shows that every subgroup of
an Abelian group is normal.)

18



3 CHAPTER 1

BASICS OF IDEALS

3.1 IDEALS

An additive subgroup N of a ring R satisfying
the properties

aN ⊆N and Nb ⊆ N; for all a,b ∈ R

is an ideal

3.1.1 Example 1

We see that nZ is an ideal in the ring Z since
we know it is a subring,and s(nm)=(nm)s ∈ nZ
for all s∈Z

3.1.2 Example 2

Let F be the ring of all functions mapping R
into R, and let C be the subring of F
consisting of all constant function in F.Is C is
an ideal in F? Why?
solution:
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It is not true that the product of a constant
function is again a constant function .For
example ,the product of sinx and 2 is the
function 2sinx .Thus C is not an ideal of F.

3.1.3 Example 3

Let F be the ring of all function mapping R
into R ,and N be the subring of all function f
such that f(2)=0.Is N an ideal in F?why or why
not?
solution:

Let f∈N and let g∈N .Then
(fg)(2)=f(2)g(2)=0g(2)=0 ,so fg∈N.Similarly,we
find that gf∈N.therefore N is an ideal of F.We
could also have proved this by just observing
that N is the kernel of the evaluation
homomorphism 2:F−→R

3.1.4 example 4

Ring
Z={...,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, ...}
subset 2Z={...,−8,−6,−4,−2, 0, 2, 4, 6, 8, ...}
Take 3 from Z

3(2Z)=6Z={....,−12,−6, 0, 6, 12, ...}

20



That is 3(2Z)⊆2Z =⇒aN ⊆N
In general we can say that nZ is said to be an
ideal of Z.

3.2 LEFT AND RIGHT IDEAL

A subring I of R is a left ideal if a∈I,

r∈ R =⇒ ra∈I

A right ideal is defined similarly.
A subring I of R is a right ideal if a∈I,

r∈R =⇒ ar∈I

3.3 COROLLARY:

Let N be an ideal of a ring R.Then the additive
cosets of N from a ring R/N with the binary
operation defined by

(a +N) + (b +N) = (a + b) +N

and

(a +N)(b +N) = ab +N

21



3.4 THEOREM 1.1:

Let N be an ideal of ring R .Then

y:R−→R/N given by y(x) = x +N

is a ring homomorphism with kernal N

3.5 THEOREM 1.2:

Fundamental Homomorphism Theorem:
Let ϕ:R−→R′ be a ring homomorphism with
kernal N .Then [R] is a ring map
µ:R/N−→[R] given by u(x+n)=p(x)is an isomorphism.Ify:R−→R/N is the homomorphism given byy(x)=x+Nthenforeachx∈R
we have p(x) =µy(x).

3.6 Properties In Ideal

• In a ring R ,the set R itself forms a two
sided ideal called unit ideal.

• The {0R} consisting of only the additive
identity 0R forms a two sided ideal called
the zero ideal.

• An (left , right or two sided) ideal that is
not the unit ideal is called a proper ideal.

Note:
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A left ideal is a proper ideal if and only if it
does not contain a unit element.
Remark:

• The even integers forms an ideal in a Z of
all integers;it is usually denoted by 2Z
.This is because sum of any even number
is even,and the product of any integer with
an even integer is also even .Similarly ,the
set of all integers divisible by a fixed
integer n is an ideal nZ.

• The of all polynomial with real coefficient
which are divisible by the polynomial x2+1
is an ideal in the ring of all polynomials.

• The set of all n×n matrices whose last row
is zero forms a right ideal in the ring of all
n×n matrices .It is not a left ideal .The set
of all n×n matrices whose last column is
zero forms a left ideal but not a right ideal.

• A ring is called a simple ring if it is
nonzero and has no two sided ideal other
than (0),(1).
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3.7 THEOREM 1.3:

The intersection of two ideal of a ring R is
again an ideal of the ring R.
proof

consider I1 and I2 are two ideal
=⇒ I1 and I2 are subgroup of ⟨R,+⟩
=⇒ I1 ∩ I2 is also a subgroup of ⟨R,+⟩
Now,if a ∈ I1 ∩ I2 and r∈ R
=⇒ a∈ I1 and a ∈ I2 ,r∈ R.
since a∈ I and r∈ R
=⇒ ar∈I1 and ra∈I1
and ra∈I2 and ar∈I2
=⇒ ar∈I1 and ar∈I2
=⇒ ar∈ I1 ∩ I2

3.8 THEOREM 1.4:

If I1 and I2 are two ideals then I1+I2 such that
I1+I2 ={a1+a2:a1∈I1 and a2∈I2} is also an ideal
containing both I1 and I2.
proof

x and y ∈ I1 + I2
x-y ∈ I1 + I2
x=a1 + a2
y=b1 + b2

24



a∈ I1 =⇒ a + 0 ∈ I1
=⇒ a + 0 ∈ I1 + I2
I1 ⊆ I1 + I2

3.9 THEOREM 1.5:

If R is a commutative ring then for every a ∈ R,

Ra={r.a, r ∈ R}

is an ideal.
proof
r1a ∈ R2 and r2a ∈ R2

r1a− r2a = (r1 − r2)a∈ Ra
Ra is subgroup of ⟨ R,+ ⟩
r1a∈ Ra ,r∈ R
=⇒ r(r1 a) = (r r1)a ∈ Ra
=⇒ (r1 a)r = r(a r1) = r1(r a)

= (r r1)a ∈ Ra

3.10 Ideal Operation

• The sum and product of ideals are defined
as follows .
for a and b left(right) ideals of a ring R
their sum is

25



a + b={a + b : a ∈ aandb ∈ b},

which is a left(right) ideal, and if a,b are
two sided

ab={a1b1 + ..... + anbn : ai ∈ aandbi ∈ b, i =

1, 2, 3...nforn = 1, 2...}

That is the product is the ideal generated
by all product of the form ab with a in a
and b in b

• The distributive law holds for two sided
ideal a,b,c

a(b + c) = ab + ac

(a + b)c = ac + bc

If a product is replaced by an intersection
,a partial distributive law holds:

a ∩ (b + c) ⊃ a ∩ b + a ∩ c

where the equality holds if a contains b or
c

• If a,b are ideal of a commutative ring R
,then a ∩ b = ab in the following two cases
(at least)

26



a + b = (1)

a is generated by elements that form a
regular sequence modulo b

Example:

In Z we have
(n) ∩ (m) = lcm(n,m)Z
since (n) ∩ (m) is the set of integers which are
divisible by both n and m.
Let R = Cx, y, z, w
and let
a = (z, w), b = (x + z, y + w), c = (x + z, w).

then,

• a + b = (z, w, x + z, y + w =

(x, y, z, w)anda + c = (z, w, x + z)

• ab = (z(x + z), z(y + w), w(x + z), w(y + w)) =

(x2 + xz, zy + wz,wx + wz,wy + w2)

• ac = (xz + z2, zw, xw + zw,w2)

• a ∩ b = ab while a ∩ c = (w, zx + z2) ̸= ac

27



4 CHAPTER 2

TYPES OF IDEALS

4.1 MAXIMAL IDEALS

DEFINITION:

A maximal ideal of a ring R is an ideal
M different from R such that there is no
proper ideal N of R properly containing M.

4.1.1 Example

The ideal (2,*) is a maximal ideal in a ring
Z[X]. Example If F is a field ,then the only
maximal ideal is {0}

4.1.2 Example

Z8 ={0, 1, 2, 3, 4, 5, 6, 7}

1
8 = < 1 > = Z8

2
8 = < 2 > = {0, 2, 4, 6}

28



4
8 = < 4 > = {0, 4}

8
8 = < 8 > = {0}

< 8 > ⊆ < 4 > ⊆ < 2 > ⊆ < 1 > = Z8

Therefore < 2 > is the only maximal ideal of Z8

4.1.3 Example

Z36

1
36 = < 1 > = Z36

2
36 = < 2 > = {0, 2, 4, 6, 8, 10, .., 32, 34}

3
36 = < 3 > = {0, 3, 6, 9, .., 30, 33}

4
36 = < 4 > = {0, 4, 8, 12, 16, 20, 24, 28, 32}

6
36 = < 6 > = {0, 6, 12, 18, 24, 30}

9
36 = < 9 > = {0, 9, 18, 27}

29



12
36 = < 12 > = {0, 12, 24}

18
36 = < 18 > = {0, 18}

36
36 = < 36 > = {0}

< 12 > ⊆ < 4 > ⊆ < 2 >

< 12 > ⊆ < 6 > ⊆ < 2 >

< 18 > ⊆ < 2 >

< 12 > ⊆ < 6 > ⊆ < 3 >

< 18 > ⊆ < 9 > ⊆ < 3 >

< 12 > ⊆ < 3 >

< 12 > ⊆ < 6 >

Therefore < 2 > and < 3 > are maximal ideals
of Z36

30



4.2 MINIMAL IDEALS

DEFINITION:

A non-zero ideal is called minimal if it
contains no other non zero ideal.

4.2.1 Example

In an integral domain the only minimal ideal
is the zero ideal

4.3 PRIME IDEALS

DEFINITION:

An ideal N ∈ R is a commutative ring R
is a prime ideal if ab ∈ N implies either a ∈ N

or b ∈ N for a,b R.

Note that {0} is a prime ideal in Z and, indeed
in any integral domain

4.3.1 Example

Note that Z × {0} is a prime ideal of Z × Z for
if (a, b)(c, d) ∈ Z × {0}. This implies that either
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b = 0 so (a, b) ∈ Z× {0} or d 0 so (c, d) ∈ Z × {0}
.Note that (Z × Z)(Z ×{0}) is isomorphic to Z
which is an integral domain.

4.3.2 Example

The prime ideals of Z are (0),(2),(3),(5),..

4.3.3 Example

2 Z × 3Z is not a prime ideal of Z × Z. Since
(2, 1) (1, 3) = (2, 3) ∈ 2Z × 3Z but (2,1) /∈ 2Z ×
3Z and (1,3)/∈ 2Z × 3Z

4.3.4 Example

12Z is not a prime ideal of Z since 3.8=24 ∈
{12} but 3 /∈ {12} and 8 /∈ {12}

4.3.5 Example

R = Z= { ±1,±2,±3, ..}
A = 2 Z= { 0, ±2,±4,±6, ..}
2 Z is a prime ideal of Z
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5 CHAPTER 3

THEOREMS IN IDEALS

5.1 THEOREM

nZ is prime ideal of Z if and only if n is prime.

Proof

Let nZ be a prime ideal of Z
Let if possible n is not a prime number
ie, n is composite
n=st ,1 < s < n ,1 < t < n

n ∈ nZ
st ∈ nZ and also s,t ∈ Z
Since nZ is prime ideal
=⇒ s ∈ nZ or t ∈ Z,which is not possible
∴ n is prime.
Conversely,
let n be a prime number
let a,b ∈ Z and ab ∈ nZ
=⇒ n/ab
=⇒ n/a or n/b (∴ n is prime)
=⇒ a = nk1, or b = nk2 where k1, k2 ∈ Z
=⇒ a ∈ nZ or b ∈ nZ
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=⇒ nZ is prime ideal of Z.

5.2 THEOREM

Every maximal ideal in a commutative ring R
with unity is a prime ideal.

Proof

If M is maximal in R,then R/M is a field.
hence an integral domain, and therefore M is
a prime ideal by theorem that let R be a
commutative ring with unity,and let N /∈ R be
an ideal in R. Then,R/N is an integral domain
if and only if N is a prime ideal in R.

5.3 THEOREM

Let R is a commutative ring with unity, N is
an ideal of R, N ̸= R
Then, N is a prime ideal of R if and only if R/N
is an integral domain.

Proof

Given that R is a commutative ring with unity
N is an ideal of R, N ̸= R
Assume that N is a prime ideal of R
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R is commutative ring with unity =⇒ R/N is
also a commutative ring with unity
Now we have to show that R/N has no zero
divisor
(a+N)(b+N)=N =⇒ ab+N=N
=⇒ ab ∈ N
=⇒ a ∈ N or b ∈ N (since N is a prime ideal)
=⇒ a+N=N or b+N=N
ie,(a+N)(b+N)=N
=⇒ a+N=N or b+N=N
∴ R/N has no divisors
ie, R/N is an integral domain
conversely,
Assume that R/N is an integral domain
we have to show that N is an prime ideal
ab ∈ N =⇒ ab+N=N
=⇒ (a+N)(b+N)=N
=⇒ a+N=N or b+N=N
=⇒ a ∈ N or b ∈ N
∴ N is an prime ideal

5.4 THEOREM

If A and B are two left ideals of a ring R,
then A ∩ B is also a left ideal of R
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Proof

let x ∈ A ∩ B and r ∈ R
since x ∈ A ∩ B =⇒ x ∈ A and x ∈ B
since x ∈ A,r ∈ R =⇒ rx ∈ A(since A is left
ideal)
x ∈ B,r ∈ R =⇒ rx ∈ B(since B is left ideal)
since rx ∈ A,rx ∈ B =⇒ rx ∈ A ∩ B
∴ A ∩ B is a left ideal of R.

5.5 THEOREM

Let R be a commutaive ring with unity.
Then M is a maximal ideal of R if and only if
R/M is a field.

Proof

suppose M is a maximal ideal in R.
Observe that if R is a commutative ring with
unity,then R/M is also a nonzero
commutative ring unity if M ̸= R,which is the
case if M is maximal.
Let (a+M) ∈ R/M,with a /∈ M,so that a+M is
not the addictive identity element of R/M.
Suppose a+M has no multiplicative inverse in
R/M.
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Then the set (R/M)(a+M)=(r+M)(a+M) (r+M) ∈
R/M
we easily see that (R/M)(a+M) is an ideal of
R/M.
It is nontrivial because a /∈ M,and it is a
proper ideal because it does not contain 1+M
If γ :R −→ R/M is the canonical
then γ−1 [(R/M)(a+M)] is a proper ideal of R
containing M.
But this contradicts our assumption that M is
a maximal ideal, so a+M must have a
multiplicative inverse in R/M.
conversely,
suppose that R/M is a field.
If N is any ideal of R such that M ⊆ N ⊆ R and
γ is the canonical homomorphism of R onto
R/M,then γ[N] is an ideal of R/M with [(0+M)]
⊆ γ [N] ⊆ R/M.
But this is contrary to that the field R/M
contains no proper nontrivial ideals.
Hence if R/M is a field, M is maximal.
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6 CONCLUSION

This project discusses the concept of ideals that
is fundamental to ring theory.An ideal is an additive
subgroup N of a ring R satisfying the properties aN ⊆ N
and Nb ⊆ N for all a,b ∈ R.

In this project , the concept of an ideal is
introduced and thus illustrated. It mostly includes the
different types of ideals,its properties and different
proofs related to this topic.
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1 INTRODUCTION

In ring theory, a branch of abstract algebra an ideal of
ring is a special subset of its element.Ernst Kummer
invented the concept of ideal numbers to serve as the
”missing” factors in number ring in which unique
factorisation fails.

Ideals generalize certain subsets of the integers, such
as the even numbers or the multiples of 3. Addition
and subtraction of even numbers preserves evenness,
and multiplying an even number by any integer (even
or odd) results in an even number; these closure and
absorption properties are the defining properties of an
ideal. An ideal can be used to construct a quotient ring
in a way similar to how, in group theory, a normal
subgroup can be used to construct a quotient group.
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2 PRELIMINARIES

2.1 GROUP

A group is a finite or infinite set of elements
together with a binary operation (called the
group operation) that together satisfy the four
fundamental properties of closure,
associativity, the identity property, and the
inverse property.

2.1.1 Example1

(Z+) is a group:

Associativity: Let a,b,c ∈ Z. Then
(a+b)+c=a+b+c=a+(b+c) So Z+ is associative.

Identity: Let a ∈ Z. Then let e be an element of
Z such that a+e=e+a=a. Logically, this means
that e=0. So 0 is the identity element of Z
under addition.

Inverse: Let a ∈ Z . Then there exist an
element −a such that a+−a=−a+a=e.Therefore
− a is the inverse element of a.
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We have proved all three properties; therefore,
the ordered pair (Z+) is a group.

2.2 SUBGROUP

A subgroup is a subset of a group that itself is
a group. That means, if H is a non-empty
subset of a group G, then H is called the
subgroup of G if H is a group.

2.2.1 Example1

subgroups of Z6 are 〈 0 〉, 〈 3 〉, 〈 2 〉, and Z6.

2.3 RING

A ring is a set having an addition that must
be commutative (a + b = b + a for any a, b)
and associative [a + (b + c) = (a + b) + c for any
a, b, c], and a multiplication that must be
associative [a(bc) = (ab)c for any a, b, c]. There
must also be a zero (which functions as an
identity element for addition), negatives of all
elements (so that adding a number and its
negative produces the ring’s zero element),
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and two distributive laws relating addition
and multiplication [a(b + c) = ab + ac and (a +
b)c = ac + bc for any a, b, c]. A commutative
ring is a ring in which multiplication is
commutative—that is, in which ab = ba for
any a, b.

2.3.1 Example1

The simplest example of a ring is the
collection of integers (. . . , 3, 2, 1, 0, 1, 2, 3,
. . . ) together with the ordinary operations of
addition and multiplication.

2.4 SUBRING

A subring S of a ring R is a subset of R which
is a ring under the same operations as R.
Equivalently: The criterion for a subring. A
non-empty subset S of R is a subring if a, b ∈
S implies that a - b, ab ∈ S. So S is closed
under subtraction and multiplication.

2.4.1 Example1

2Z = 2n — n ∈ Z is a subring of Z
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2.5 FUNCTION

Let A and B be two sets. A binary relation f
from A to B is called a function (or mapping)
from A to B if each element of A is related to
exactly one element of B.

2.6 KERNEL

The kernel is the set of all elements in G
which map to the identity element in H. It is a
subgroup in G and it depends on f. Different
homomorphisms between G and H can give
different kernels. If f is an isomorphism, then
the kernel will simply be the identity element.

2.6.1 Example1

Let G be the cyclic group on 6 elements 0, 1,
2, 3, 4, 5 with modular addition, H be the
cyclic on 2 elements 0, 1 with modular
addition, and f the homomorphism that maps
each element g in G to the element g modulo
2 in H. Then ker f = 0, 2, 4 , since all these
elements are mapped to 0H.

11



2.7 RING HOMOMORPHISM

A ring homomorphism is a function f : R → S
satisfying f(x + y) = f(x) + f(y) and f(xy) = f(x)f(y).
That is, it is a semigroup homomorphism for
multiplication and a group homomorphism
for addition.

2.7.1 Example1

The mapping from n-square matrices to
m-square matrices for m > n which adds to a
matrix m−n rows and columns of zero.

2.8 ISOMORPHISM

A group isomorphism is a function between
two groups that sets up a one-to-one
correspondence between the elements of the
groups in a way that respects the given group
operations. If there exists an isomorphism
between two groups, then the groups are
called isomorphic.

2.8.1 Example1

The group ( R , + ) ( R ,+) is isomorphic to the
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group ( C ,+) ( C ,+) of all complex numbers
under addition

2.9 INTEGRAL DOMAIN

An integral domain is a commutative ring
with an identity (1 0) with no zero-divisors.
That is ab = 0 a = 0 or b = 0.

2.9.1 Example1

The ring Z is an integral domain

2.9.2 Example2

If a, b are elements of a field with ab = 0 then
if a 0 it has an inverse a-1 and so multiplying
both sides by this gives b = 0. Hence there are
no zero-divisors and we have: Every field is an
integral domain.

2.10 COMMUTATIVE RING

A commutative ring is a ring R in which
multiplication is commutative—that is, in

which ab = ba for any a, b R
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2.10.1 Example1

1. Z, Q, R,C are commutative rings.
2. Z=(a+bi: a,b Z)is a commutative ring
3. Z is a commutative ring.

2.11 FIELD

A field is a set F together with two binary
operations on F called addition and
multiplication.[1] A binary operation on F is a
mapping F × F → F, that is, a correspondence
that associates with each ordered pair of
elements of F a uniquely determined element
of F.satisfy the following property :

Associativity of addition and multiplication: a
+ (b + c) = (a + b) + c, and a (b c) = (a b) c.

Commutativity of addition and multiplication:
a + b = b + a, and a b = b a.

Additive and multiplicative identity: there
exist two different elements 0 and 1 in F such
that a + 0 = a and a 1 = a.
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Additive inverses: for every a in F, there exists
an element in F, denoted a, called the additive
inverse of a, such that a + (a) = 0.

Multiplicative inverses: for every a 0 in F,
there exists an element in F, denoted by a1 or
1/a, called the multiplicative inverse of a,
such that a a1 = 1.

Distributivity of multiplication over addition:
a (b + c) = (a b) + (a c).

2.11.1 Example1

The set of real numbers, denoted ”R”, together
with the regular addition (+) and
multiplication (*) arithmetic operations is a
field. Assuming we already know it is a ring
(i.e., it’s closed and associative under both
operations, commutative under addition, has
additive and multiplicative identities, and has
additive inverses)
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2.12 HOMOMORPHISM

A homomorphism is a map between two
algebraic structures of the same type (that is
of the same name), that preserves the
operations of the structures. This means a
map f : A → B f:A → B between two sets
AA,BB equipped with the same structure such that, if

· · is an operation of the structure (supposed
here, for simplification, to be a binary
operation) , then
f (x · y)=f(x) · f(y)f (x · y)=f(x) · f(y)

2.13 CONSTANT FUNCTION

A constant function is a function which takes
the same value for f(x) no matter what x is.
When we are talking about a generic constant
function, we usually write f(x) = c, where c is
some unspecified constant. Examples of
constant functions include f(x) = 0, f(x) = 1,
f(x) = , f(x) = 0.
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2.14 COSET

A subgroup H of a group G may be used to
decompose the underlying set of G into
disjoint, equal-size subsets called cosets.
There are left cosets and right cosets. Cosets
have the same number of elements as does H.
Furthermore, H itself is both a left coset and a
right coset.

gH = gh : h an element of H for g in G

Hg = hg : h an element of H for g in G.

2.14.1 Example1

Let G be the additive group of the
integers,Z = (..., 2, 1, 0, 1, 2, ...,+) and H the
subgroup (3Z,+) = (..., 6, 3, 0, 3, 6, ...,+). Then
the cosets of H in G are the three sets 3Z, Z +
1, and 3Z + 2, where
3Z + a = ..., 6 + a, 3 + a, a, 3 + a, 6 + a, .... These
three sets partition the set Z, so there are no
other right cosets of H. Due to the
commutivity of addition H + 1 = 1 + H and H +

17



2 = 2 + H. That is, every left coset of H is also
a right coset, so H is a normal subgroup. (The
same argument shows that every subgroup of
an Abelian group is normal.)
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3 CHAPTER 1

BASICS OF IDEALS

3.1 IDEALS

An additive subgroup N of a ring R satisfying
the properties

aN ⊆N and Nb ⊆ N; for all a,b ∈ R

is an ideal

3.1.1 Example 1

We see that nZ is an ideal in the ring Z since
we know it is a subring,and s(nm)=(nm)s ∈ nZ
for all s∈Z

3.1.2 Example 2

Let F be the ring of all functions mapping R
into R, and let C be the subring of F
consisting of all constant function in F.Is Cis
an ideal in F?Why?
solution:
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It is not true that the product of a constant
function is again a constant function .For
example ,the product of sinx and 2 is the
function 2sinx .Thus C is not an ideal of F.

3.1.3 Example 3

Let F be the ring of all function mapping R
into R ,and N be the subring of all function f
such that f(2)=0.Is N an ideal in F?why or why
not?
solution:

Let f∈N and let g∈ .Then
(fg)(2)=f(2)g(2)=0g(2)=0 ,so fg∈N.Similarly,we
find that gf∈N.therefore N is an ideal of F.We
could also have proved this by just observing
that N is the kernel of the evaluation
homomorphism 2:F−→R

3.1.4 example 4

Ring
Z={...,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, ...}
subset 2Z={...,−8,−6,−4,−2, 0, 2, 4, 6, 8, ...}
Take 3 fromZ

3(2Z)=6Z={....,−12,−6, 0, 6, 12, ...}

20



That is 3(2Z)⊆2Z =⇒aN ⊆N
In general we can say that nZ is said to be an
ideal of Z.

3.2 LEFT AND RIGHT IDEAL

A subring I of R is a left ideal if a∈I,

r∈ R =⇒ ra∈I

A right ideal is defined similarly.
A subring I of R is a right ideal if a∈I,

r∈R =⇒ ar∈I

3.3 COROLLARY:

Let N be an ideal of a ring R.Then the additive
cosests of N from a ring R/N with the binary
operation defined by

(a +N) + (b +N) = (a + b) +N

and

(a +N)(b +N) = ab +N
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3.4 THEOREM 1.1:

Let N be an ideal of ring R .Then

y:R−→R/N given by y(x) = x +N

is a ring homomorphism with kernal N

3.5 THEOREM 1.2:

Fundamental Homomorphism Theorem:
Let ϕ:R−→R′ be a ring homomorphism with
kernal N .Then [R] is a ring map
µ:R/N−→[R] given by u(x+n)=p(x)is an isomorphism.Ify:R−→R/N is the homomorphism given byy(x)=x+Nthenforeachx∈R
we have p(x) =µy(x).

3.6 Properties In Ideal

• In a ring R ,the set R itself forms a two
sided ideal called unit ideal.

• The {0R} consisting of only the additive
identity 0R forms a two sided ideal called
the zero ideal.

• An (left , right or two sided) ideal that is
not the unit ideal is called a proper ideal.

Note:
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A left ideal is a proper ideal if and only if it
does not contain a unit element.
Remark:

• The even integers forms an ideal in a Z of
all integers;it is usually denoted by 2Z
.This is because sum of any even number
is even,and the product of any integer with
an even integer is also even .Similarly ,the
set of all integers divisible by a fixed
integer n is an ideal nZ.

• The of all polynomial with real coefficient
which are divisible by the polynomial x2+1
is an ideal in the ring of all polynomials.

• The set of all n×n matrices whose last row
is zero forms a right ideal in the ring of all
n×n matrices .It is not a left ideal .The set
of all n×n matrices whose last column is
zero forms a left ideal but not a right ideal.

• A ring is called a simple ring if it is
nonzero and has no two sided ideal other
than (0),(1).
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3.7 THEOREM 1.3:

The intersection of two ideal of a ring R is
again an ideal of the ring R.
proof

consider I1 and I2 are two ideal
=⇒ I1 and I2 are subgroup of ⟨R,+⟩
=⇒ I1 ∩ I2 is also a subgroup of ⟨R,+⟩
Now,if a ∈ I1 ∩ I2 and r∈ R
=⇒ a∈ I1 and a ∈ I2 ,r∈ R.
since a∈ I and r∈ R
=⇒ ar∈I1 and ra∈I1
and ra∈I2 and ar∈I2
=⇒ ar∈I1 and ar∈I2
=⇒ ar∈ I1 ∩ I2

3.8 THEOREM 1.4:

If I1 and I2 are two ideals then I1+I2 such that
I1+I2 ={a1+a2:a1∈I1 and a2∈I2} is also an ideal
containing both I1 and I2.
proof

x and y ∈ I1 + I2
x-y ∈ I1 + I2
x=a1 + a2
y=b1 + b2
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a∈ I1 =⇒ a + 0 ∈ I1
=⇒ a + 0 ∈ I1 + I2
I1 ⊆ I1 + I2

3.9 THEOREM 1.5:

If R is a commutative ring then for every a ∈ R,

Ra={r.a, r ∈ R}

is an ideal.
proof
r1a ∈ R2 and r2a ∈ R2

r1a− r2a = (r1 − r2)a∈ Ra
Ra is subgroup of ⟨ R,+ ⟩
r1a∈ Ra ,r∈ R
=⇒ r(r1 a) = (r r1)a ∈ Ra
=⇒ (r1 a)r = r(a r1) = r1(r a)

= (r r1)a ∈ Ra

3.10 Ideal Operation

• The sum and product of ideals are defined
as follows .
for a and b left(right) ideals of a ring R
their sum is
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a + b={a + b : a ∈ aandb ∈ b},

which is a left(right) ideal, and if a,b are
two sided

ab={a1b1 + ..... + anbn : ai ∈ aandbi ∈ b, i =

1, 2, 3...nforn = 1, 2...}

That is the product is the ideal generated
by all product of the form ab with a in a
and b in b

• The distributive law holds for two sided
ideal a,b,c

a(b + c) = ab + ac

(a + b)c = ac + bc

If a product is replaced by an intersection
,a partial distributive law holds:

a ∩ (b + c) ⊃ a ∩ b + a ∩ c

where the equality holds if a contains b or
c

• If a,b are ideal of a commutative ring R
,then a ∩ b = ab in the following two cases
(at least)
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a + b = (1)

a is generated by elements that form a
regular sequence modulo b

Example:

In Z we have
(n) ∩ (m) = lcm(n,m)Z
since (n) ∩ (m) is the set of integers which are
divisible by both n and m.
Let R = Cx, y, z, w
and let
a = (z, w), b = (x + z, y + w), c = (x + z, w).

then,

• a + b = (z, w, x + z, y + w =

(x, y, z, w)anda + c = (z, w, x + z)

• ab = (z(x + z), z(y + w), w(x + z), w(y + w)) =

(x2 + xz, zy + wz,wx + wz,wy + w2)

• ac = (xz + z2, zw, xw + zw,w2)

• a ∩ b = ab while a ∩ c = (w, zx + z2) ̸= ac
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4 CHAPTER 2

TYPES OF IDEALS

4.1 MAXIMAL IDEALS

DEFINITION:

A maximal ideal of a ring R is an ideal
M different from R such that there is no
proper ideal N of R properly containing M.

4.1.1 Example

The ideal (2,*) is a maximal ideal in a ring
Z[X]. Example If F is a field ,then the only
maximal ideal is {0}

4.1.2 Example

Z8 ={0, 1, 2, 3, 4, 5, 6, 7}

1
8 = < 1 > = Z8

2
8 = < 2 > = {0, 2, 4, 6}
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4
8 = < 4 > = {0, 4}

8
8 = < 8 > = {0}

< 8 > ⊆ < 4 > ⊆ < 2 > ⊆ < 1 > = Z8

Therefore < 2 > is the only maximal ideal of Z8

4.1.3 Example

Z36

1
36 = < 1 > = Z36

2
36 = < 2 > = {0, 2, 4, 6, 8, 10, .., 32, 34}

3
36 = < 3 > = {0, 3, 6, 9, .., 30, 33}

4
36 = < 4 > = {0, 4, 8, 12, 16, 20, 24, 28, 32}

6
36 = < 6 > = {0, 6, 12, 18, 24, 30}

9
36 = < 9 > = {0, 9, 18, 27}
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12
36 = < 12 > = {0, 12, 24}

18
36 = < 18 > = {0, 18}

36
36 = < 36 > = {0}

< 12 > ⊆ < 4 > ⊆ < 2 >

< 12 > ⊆ < 6 > ⊆ < 2 >

< 18 > ⊆ < 2 >

< 12 > ⊆ < 6 > ⊆ < 3 >

< 18 > ⊆ < 9 > ⊆ < 3 >

< 12 > ⊆ < 3 >

< 12 > ⊆ < 6 >

Therefore < 2 > and < 3 > are maximal ideals
of Z36
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4.2 MINIMAL IDEALS

DEFINITION:

A non-zero ideal is called minimal if it
contains no other non zero ideal.

4.2.1 Example

In an integral domain the only minimal ideal
is the zero ideal

4.3 PRIME IDEALS

DEFINITION:

An ideal N ∈ R is a commutative ring R
is a prime ideal if ab ∈ N implies either a ∈ N

or b ∈ N for a,b R.

Note that {0} is a prime ideal in Z and, indeed
in any integral domain

4.3.1 Example

Note that Z × {0} is a prime ideal of Z × Z for
if (a, b)(c, d) ∈ Z × {0}. This implies that either
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b = 0 so (a, b) ∈ Z× {0} or d 0 so (c, d) ∈ Z × {0}
.Note that (Z × Z)(Z ×{0}) is isomorphic to Z
which is an integral domain.

4.3.2 Example

The prime ideals of Z are(0),(2),(3),(5),..

4.3.3 Example

2 Z × 3Z is not a prime ideal of Z × Z. Since
(2, 1) (1, 3) = (2, 3) ∈ 2Z × 3Z but (2,1) /∈ 2Z ×
3Z and (1,3)/∈ 2Z × 3Z

4.3.4 Example

12Z is not a prime ideal of Z since 3.8=24 ∈
{12} but 3 /∈ {12} and 8 /∈ {12}

4.3.5 Example

R = Z= { ±1,±2,±3, ..}
A = 2 Z= { 0, ±2,±4,±6, ..}
2 Z is a prime ideal of Z
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5 CHAPTER 3

THEOREMS IN IDEALS

5.1 THEOREM

nZ is prime ideal of Z if and only if n is prime.

Proof

Let nZ be a prime ideal of Z
Let if possible n is not a prime number
ie, n is composite
n=st ,1 < s < n ,1 < t < n

n ∈ nZ
st ∈ nZ and also s,t ∈ Z
Since nZ is prime ideal
=⇒ s ∈ nZ or t ∈ Z,which is not possible
∴ n is prime.
Conversly,
let n be a prime number
let a,b ∈ Z and ab ∈ nZ
=⇒ n/ab
=⇒ n/a or n/b (∴ n is prime)
=⇒ a=nk1, or b=nk2 where k1,k2 ∈ Z
=⇒ a ∈ nZ or b ∈ nZ

33



=⇒ nZ is prime ideal of Z.

5.2 THEOREM

Every maximal ideal in a commutative ring R
with unity is a prime ideal.

Proof

If M is maximal in R,then R/M is a field.
hence an integral domain, and therefore M is
a prime ideal by theorem that let R be a
commutative ring with unity,and let N /∈ R be
an ideal in R. Then,R/N is an integral domain
if and only if N is a prime ideal in R.

5.3 THEOREM

Let R is a commutative ring with unity, N is
an ideal of R, N ̸= R
Then, N is a prmie ideal of R if and only if R/N
is an integral domain.

Proof

Given that R is a commutative ring with unity
N is an ideal of R, N ̸= R
Assume that N is a prime ideal of R
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R is commutative ring with unity =⇒ R/N is
also a commutative ring with unity
Now we have to show that R/N has no zero
divisor
(a+N)(b+N)=N =⇒ ab+N=N
=⇒ ab ∈ N
=⇒ a ∈ N or b ∈ N (since N is a prime ideal)
=⇒ a+N=N or b+N=N
ie,(a+N)(b+N)=N
=⇒ a+N=N or b+N=N
∴ R/N has no divisors
ie, R/N is an integral domain
conversely,
Assume that R/N is an integral domain
we have to show that N is an prime ideal
ab ∈ N =⇒ ab+N=N
=⇒ (a+N)(b+N)=N
=⇒ a+N=N or b+N=N
=⇒ a ∈ N or b ∈ N
∴ N is an prime ideal

5.4 THEOREM

If A and B are two left ideals of a ring R,
then A ∩ B is also a left ideal of R
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Proof

let x ∈ A ∩ B and r ∈ R
since x ∈ A ∩ B =⇒ x ∈ A and x ∈ B
since x ∈ A,r ∈ R =⇒ rx ∈ A(since A is left
ideal)
x ∈ B,r ∈ R =⇒ rx ∈ B(since B is left ideal)
since rx ∈ A,rx ∈ B =⇒ rx ∈ A ∩ B
∴ A ∩ B is a left ideal of R.

5.5 THEOREM

Let R be a commutaive ring with unity.
Then M is a maximal ideal of R if and only if
R/M is a field.

Proof

suppose M is a maximal ideal in R.
Observe that if R is a commutative ring with
unity,then R/M is also a nonzero
commutative ring unity if M ̸= R,which is the
case if M is maximal.
Let (a+M) ∈ R/M,with a /∈ M,so that a+M is
not the addictive identity element of R/M.
Suppose a+M has no multiplicative inverse in
R/M.
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Then the set (R/M)(a+M)=(r+M)(a+M) (r+M) ∈
R/M
we easily see that (R/M)(a+M) is an ideal of
R/M.
It is nontrivial because a /∈ M,and it is a
proper ideal because it does not contain 1+M
If γ :R −→ R/M is the canonical
then γ−1 [(R/M)(a+M)] is a proper ideal of R
containing M.
But this contradicts our assumption that M is
a maximal ideal, so a+M must have a
multiplicative inverse in R/M.
conversely,
suppose that R/M is a field.
If N is any ideal of R such that M ⊆ N ⊆ R and
γ is the canonical homomorphism of R onto
R/M,then γ[N] is an ideal of R/M with [(0+M)]
⊆ γ [N] ⊆ R/M.
But this is contrary to that the field R/M
contains no proper nontrivial ideals.
Hence if R/M is a field, M is maximal.
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6 CONCLUSION

This project discusses the concept of ideals that
is fundamental to ring theory.An ideal is an additive
subgroup N of a ring R satisfying the properties aN ⊆ N
and Nb ⊆ N for all a,b ∈ R.

In this project , the concept of an ideal is
introduced and thus illustrated. It mostly includes the
different types of ideals,its properties and different
proofs related to this topic.
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INTRODUCTION
Number theory(or arithmetic or higher arithmetic in older us-

age) is a branch of pure mathematics devoted primarily to the study of the

integers and integer-valued functions.German mathematician Carl Friedrich

Gauss (1777-1855) said, ”Mathematics is the queen of the sciences - and

number theory is the queen of mathematics.

In accordance with the research methods and objectives, we briefly divide

number theory into four classes; Elementary number theory, Analytic num-

ber theory, Algebraic number theory and Geometric number theory. Here we

only deals with the Elementary number theory.

Elementary number theory is also known as classical number theory.It

is the basic theory for studying divisibility,congruences , diophantine equa-

tions etc, mainly by means of the four fundamental rules. It requires no long

preliminary training, the content is tangible and more than any other path

of mathematics, the methods of inquiry adhere to the scientific approach.

Applications of number theory:

Here are some of the most important applications of number theory. Number

theory is used to find some of the important divisibility tests, whether a given

integer m divides the integer n. Number theory have countless applications

in mathematics as well in practical applications such as :

1) Security system like in banking securities.

2) E-commerce websites.

3) Coding theory.

4) Bar codes.

5) Making of modular designs.

6) Memory management system.

7) Authentication system.
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It is also defined in hash functions, linear congruences, pseudo random num-

bers and fast arithmetic operations.
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PRELIMINARIES

DIVISOR:

A divisor is a number that divides another number either completely or with

a remainder.

GEOMETRIC PROGRESSION:

A geometric progression or a geometric sequence is the sequence , in which

each term is varied by another by a common ratio. The next term of the

sequence is produced when we multiply a constant(which is non-zero) to the

preceding term. It is represented by:

a, ar, ar2, ar3, ar4 and so on.

where a is the first term and r is the common ratio.

GCD:

The greatest common divisor of two or more numbers is the greatest common

factor number that divides them, exactly.

It is also called called the highest common factor (HCF).

Suppose 4, 8 and 16 are three numbers .Then the factors of 4, 8 and 16 are:

4− 1, 2, 4

8− 1, 2, 4, 8

16− 1, 2, 4, 8, 16
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Therefore we can conclude that 4 is the highest common factor among all

three numbers.

COMPOSITE:

In mathematics composite numbers are that have more than two factors.

example:

factors of 6 are 1,2,3 and 6, which are four factors in total

PRIME:

Prime numbers are the positive integers having only two factors, 1 and the

integer itself.

For example:

factors of 7 are only 1 and 7, totally two.

HYPOTHESIS:

Hypothesis is a proposition that is consistent with known data , but has been

neither verified nor shown to be false.

RELATIVELY PRIME:

Two integers a and b, not both of which are zero, are said to be relatively

prime whenever gcd(a, b) = 1.

example:

4− 1, 2, 4

and 15− 1, 3, 5

Here gcd(4, 15) = 1.
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Hence they are relatively prime.

CONGRUENT MODULO n:

Let n be a fixed positive integer. Two integers a and b are said to be congru-

ent modulo n, symbolized by a ≡ b(mod n) if n divides the difference a− b;

that is provided that a− b = kn for some integer k.

AMICABLE NUMBER:

Two numbers are amicable if each is equal to the sum of the proper divisors

of the other (for example, 220 and 284).

PRIMALITY:

Primality:the property of being a prime number.

EULER’S CRITERION

Euler’s criterion is a formula for determining whether an integer is a

quadratic residue modulo a prime. Precisely,

Let p be an odd prime and a be an integer coprime to p. Then

a(p−1)/2 ≡

1 (mod p) if there is an integer x such that a ≡ x2 (mod p),

−1 (mod p) if there is no such integer.

Euler’s criterion can be concisely reformulated using the Legendre sym-

bol: (a/p) = a(p−1)/2 (mod p)
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FERMAT’S THEOREM:

Let p be a prime and suppose that p doesn’t divide a. Then ap−1≡1(mod p).

PURE MATHEMATICS:

Pure mathematics is the study of mathematical concepts independently of

any application outside mathematics.
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CHAPTER 1

PERFECT NUMBERS

1 Perfect Numbers

The history of the theory of numbers abounds with famous conjectues and

open questions. this topic focuses on some of the intriguing congectures

associated with perfect numbers.

A few of these have been satisfactorily answered, but most remain unresolved.

Example 1.1. The pythagoreans considered it rather remarkable that the

number 6 is equal to the sum of its positive divisors,other than itself.

6=1+2+3

The next number after 6 having this feature is 28; for the positive divisors

of 28 are found to be 1,2,4,7,14 and 28.

28=1+2+4+7+14

And the pythagoreans called such numbers ’perfect’.

definition 1.1. A positive integer n is said to be perfect if n is equal to the

sum of all its positive divisors,excluding n itself.

The sum of the positive divisors of an integer n,each of them less than

n, is given by σ(n) − n = n. Thus, the condition ”n is perfect” amounts to

asking that σ(n)− n = n or equivalently that σ(n) = 2n
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EXAMPLE

σ(6) = 1 + 2 + 3 + 6 = 2 ∗ 6
σ(28) = 1 + 2 + 4 + 7 + 14 + 28 = 2 ∗ 28

it was partially solved by Euclid when he proved that if the sum

1 + 2 + 22 + 23 + ......+ 2k−1 = p

is a prime number, then 2k−1p is a perfect number(of necessity even). For

instance, 1+2+4=7 is a prime. Hence 4*7=28 is a perfect number. Euclid’s

arguments makes use of the formula for the sum of a geometric progression

1 + 2 + 22 + 23 + .......+ 2k−1 = 2k−1.

in this notation, the result reads as follows:

If 2k−1 is prime (k > 1), then n = 2k−1(2k − 1) is a perfect number.

Theorem 1.1. If 2k − 1 is prime (k > 1), then n = 2k−1(2k − 1) is perfect

and every even perfect number is of this form.

proof

Let 2k − 1 = p , a prime, and consider the integer n = 2k−1p. In as much as

gcd(2k−1, p) = 1, the multiplicativity of σ entails that

σ(n) = σ(2k−1p)

= σ(2k−1)σ(p)

= (2k−1)(p+ 1)
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(2k − 1)(2k) = 2n

making n a perfect number. Now conversely assume that n is an even perfect

number. we may write n as n = 2k−1m , where m is an odd integer and

k ≥ 2. It follows from gcd(2k−1,m) = 1 that

σ(n) = σ(2k−1m)

= σ(2k−1)σ(m)

= (2k−1)σ(m)

whereas the requirement for a number to be perfect gives

σ(n) = 2n = 2km

Together these relations yield

2km = (2k − 1)σ(m) .........(1)

=⇒ (2k−1)|2km. But 2k − 1and2k are relatively prime, whence (2k − 1)|m;

hence m = (2k − 1)M . Now, substituting this value of m into the equation

(1) and cancelling 2k − 1 is that σ(m) = 2kM . Because m and M are both

divisors of m (withM < m), we have

2kM = σ(m) ≥ m+M = 2kM

leading to σ(m) = m+M. The implication of this equality is that m has

only two positive divisors to it , M and m itself.

It must be that m is prime and M=1 ; in other words

m = (2k−1M)

= 2k − 1

Is a prime number, and hence the proof.
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Remark 1.1. Here our problem of finding even perfect number is reduced to

the search for primes of the form 2k− 1, a closer look at these integers might

be truthful.One thing that can be provided is that 2k−1 is a prime number, then

the exponent k must itself be prime. More generally we have the following

lemma.

Lemma 1.1. If ak − 1is prime (a > 0, k ≥ 2) then a=2 and k is also prime.

proof

ak − 1 = (a− 1)(ak−1 + ak−2 + ..........+ a+ 1)

where in the present setting,

ak−1 + ak−2 + ........+ a+ 1 ≥ a+ 1 > 1

because by the hypothesis ak−1 is prime, the other factor must be 1; that is,

a-1 = 1 so that a = 2.

If k were composite, then we could write k = rs with 1 < r and 1 < s. Thus

ak − 1 = (ar)s − 1

= (ar − 1)(ar(s−1) + ar(s−2) + ..........+ ar + 1)

and each factor on the right is plainly greater than 1. But this violates the

primality of ak − 1, so that by contradiction k must be prime.

Remark 1.2. For p = 2, 3, 5, 7 the values 3, 7, 31, 127 of 2p − 1 are primes.

so that

2(22 − 1) = 6

22(23 − 1) = 28

24(25 − 1) = 496

26(27 − 1) = 8128
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are all perfect numbers.Many early writers erroneously believed that 2p − 1

is prime for every choice of prime number p.

But we have,

211 − 1 = 2047 = (23)(89) , not prime.

But when p = 13, 2p − 1 is prime and 212(213 − 1) = 33550336 be the fifth

perfect number.

Therefore, we can say that 2p − 1 is prime and it is possible only when p is

prime.

Theorem 1.2. An even perfect number n ends in the digit 6 or 8 equivalently

either

n ≡ 6(mod 10) or n ≡ 8(mod 10)

proof

Being an even perfect number n may be represented as n = 2k−1(2k − 1),

where 2k − 1 is a prime. According to the last lemma, the exponent k must

also be prime. If k = 2, then n = 6, and the asserted result holds. We may

therefore confine our assumption to case k > 2.

The proof falls into two parts, according as k takes the form 4m+1 or 4m+3.

If k is of the form 4m+1 then

n = 24m(24m+1 − 1)

= 28k+1 − 24m

= (2 ∗ 162m)− 16m
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161 ≡ 6(mod 10) also

16t ≡ 6(mod 10) for any positive integer ’t’

Therefore we get, n = (2 ∗ 6)− 6 ≡ 6(mod 10)

Now in the case in which k= 4m+3

n = 24m+2(24m+3 − 1)

= 28m+5 − 24m+2

= (2 ∗ 162m+1)− (4 ∗ 16m)

Falling back on the fact that 16t ≡ 6(mod 10), we see that

n ≡ (2 ∗ 6)− (4 ∗ 6) ≡ −12 ≡ 8(mod 10)

ie, n ≡ 8(mod 10)

consequently, every even perfect number has a last digit equal to 6 or 8

Remark 1.3. An even perfect number n = 2k−1 ∗ (2k−1) always ends in the

digit 6 or 28. Because an integer is congruent modulo 100 to it’s last two dig-

its, it suffices to prove that, if k is of the form 4m+3, then n ≡ 28(mod 100).

To see this, note that

2k−1 = 24m+2

= (16m)(4)

≡ (6)(4)

≡ 4(mod 10)

Moreover, for k > 2 we have 4|2k−1, and therefore the number formed by

the last two digits of 2k−1 is divisible by 4, and 4 divides the last two digits

modulo 100, the various possibilities are
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2k−1 ≡ 4, 24, 44, 64or84

But this implies that

2k − 1 = 2 ∗ 2k−1 ≡ 7, 47, 87, 27 or 67(mod 100)

hence

n = 2k−1(2k − 1)

≡ 4 ∗ 7, 24 ∗ 47, 44 ∗ 87, 64 ∗ 24 or 84 ∗ 67(mod 100)
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CHAPTER 2

MERSENNE PRIME

2 Mersenne Prime

It has became traditional to call numbers of the form Mn = 2n − 1, n ≥ 1

Mersenne numbers after father Marin Mersenne who made an incorrect but

provocative assertion concerning their primality.

definition 2.1. Mersenne numbers that happens to be prime are said to be

Mersenne primes.

Remark 2.1. Mp is prime for p = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257 and

composite for all other primes p < 257

Theorem 2.1. If p and q = 2p+1 are primes, then their q|Mp or q|Mp +2.

proof

With reference to Fermat’s theorem, we know that

2q−1 − 1 ≡ 0(modq)

and factorising the left hand side,that

(2(q−1)/2 − 1)(2(q−1)/2 + 1) = (2p − 1)(2p + 1) ≡ 0(mod q)

19



ie, (2p − 1)(2p + 1) ≡ 0(mod q)

=⇒ (2p − 1)(2p − 1 + 2) ≡ 0(mod q)

=⇒ Mp(Mp + 2) ≡ 0(mod q)

By using the theorem, ”if p is a prime and p|ab, then p|a or p|b ”, we cannot
have both q|Mp and q|Mp + 2, for then q|2 , which is impossible therefore

either q|Mp or q|Mp + 2.

Example 2.1. A simple application should suffice to illustrate the above the-

orem if p = 23, then q = 2p+1 = 47 is also a prime, so that we may consider

the case of M23

The questions reduces to one of whether 47|M23 or to put it differently,

whether 223 ≡ 1(mod 47)

now we have

223 ≡ 23(25)
4 ≡ 23(−15)4(mod 47)

(−15)4 ≡ (225)2 ≡ (−10)2 ≡ 6(mod 47)

putting these two congruences together, it is seen that

223 ≡ 23 ∗ 6 ≡ 48 ≡ 1(mod 47)

hence M23 is composite.

Theorem 2.2. If q = 2n+ 1 is prime, then

a) q|Mn , provided that q ≡ 1(mod 8) or q ≡ 7(mod 8)

b) q|Mn + 2, provided that q ≡ 3(mod 8) or q ≡ 5(mod 8)
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proof

To say that q|Mn is equivalent to asserting that

2(q−1)/2 = 2n ≡ 1(mod q) .........(∗ ∗ ∗)
2n − 1 ≡ 0(mod q)

In terms of the legendre symbol, the condition (1) becomes the requirement

that (2/q) = 1 but according to the theorem, if p is an odd prime then,

(2/q) =

1, if p ≡ 1(mod 8) or p ≡ 7(mod 8)

(−1), if p ≡ 3(mod 8) or p ≡ 5(mod 8)

we get (2/q) = 1 when we have q ≡ 1(mod 8) or q ≡ 7(mod 8)

the proof of (b) proceeds along similar lines.

we get (q|mn + 2) provided that q ≡ 3(mod 8) or q ≡ 5(mod 8)

corollary 2.2.1. If p and q = 2p+1 are both odd primes, with p = 3(mod 4),

then q|Mp

proof

An odd prime p is either of the form 4k+1 or 4k+2. If p = 4k+3 , then

q = 2(4k + 3) + 1

= 8k + 7

and the above theorem yield q|Mp. since by the condition q|Mn provided

that q ≡ 1(mod 8) . In the case in which p = 4k+1, q = 8k+3 so that q does

not divide Mp, since q is not congruent to 1(mod 8) or q is not congruent to

7(mod 8), hence the theorem.
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Remark 2.2. the following is a partial list of prime numbers p ≡ 3(mod 4)

where q = 2p + 1 is also prime: p = 11, 23, 83, 131, 179, 239, 251.In each

instance,Mp is composite.

Exploring the matter a little further, the next tackle two results of Fermat

that restricted the divisors of Mp

Theorem 2.3. If p is an odd prime, then any prime divisors of Mp is of the

form 2kp + 1

proof

Let q be any prime divisors of Mp, so that 2p ≡ 1(mod q). If 2 has

order k modulo q. (ie if k is the smallest positive integer that satisfies

2k ≡ 1(mod q)),

then theorem ” Let the integer a have order k modulo n. Then ak ≡ 1(mod n)

if and only if k|n; in particular k|ϕ(n) ........(∗)
Tells us that k|p. The case k = 1 cannot arise; for this would imply that

q|1 (since if k = 1, 2k − 1 ≡ 0(mod q) =⇒ q = 1) an impossible situation.

Therefore , because both k|p and k > 1, the primality of p force k = p

In compliance with Fermat’s theorem, we have 2q−1 ≡ 1(mod q), and

again by theorem (∗) k|(q − 1) knowing that k = p , the net result is p|(q − 1).

To be defined , let us put q − 1 = pt; then q = pt + 1 . The proof is

completed by noting that if t were an odd integer, then q would be even and

a contradiction occurs. Hence , we must have q = 2kp + 1. For some choice

of k, which gives q the required form.

Theorem 2.4. If p is an odd prime , then any prime divisor q of mp is of

the form q ≡ ±1(mod 8).
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proof

Suppose that q = 2n+ 1 is a prime divisor of mp.

If a = 2(p+1)/2, then

a2 − 2 = (2(p+1)/2)2 − 2

= 2p+1 − 2

= 2p × 2− 2

= 2(2p − 1)

= 2Mp

≡ 0(mod q)

Raising both sides of the congruence a2 ≡ 2(mod q) to the nth power, we

get

aq−1 = a2n ≡ 2n(mod q)

Since q is an odd integer , one has gcd(a, q) = 1 and so aq−1 ≡ 1(mod q). In

conjunction, the last congruence tell us that

2n ≡ 1(mod q)

=⇒ 2n − 1 ≡ 0(mod q)

=⇒ q|Mn

the theorem (∗ ∗ ∗) now be brought into play to reach the condition that

q ≡ ±1(mod 8)

Therefore we get if p is an odd prime then any prime divisor q of Mp is of

the form

q ≡ ±1(mod 8)

hence the theorem.
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Remark 2.3. For an illustration of how these theorems can be used, one

might look at M17. These integers of the form 34k + 1 that are less than

362 <
√
M17 are 35, 69, 103, 137, 171, 205, 239, 273, 307, 341.

Because the smallest (non-trivial) divisors of M17 must be prime, we need

only consider the primes among the foregoing 10 numbers namely, 103, 137, 239, 307

the work can be shortened some what by noting that 307 is not congruent

to ±1(mod 8), and therefore we may delete 307 from our list.Now, either

M17 is prime or one of the three remaining possibilities divide it with a little

calculations we can check that M17 is divisible by none of 103, 137, and 239;

the result M17 is prime.

Theorem 2.5. EULER: If n is a perfect number, then any n = p1
k1p2

k2 .......pr
kr

where the p′is are distinct odd primes and p1 ≡ k1 ≡ 1(mod 4).

proof

Let n = n = p1
k1p2

k2 .......pr
kr be the prime factorisation of n. Because n

is perfect.We can write

2n = σ(n) = σ(p1
k1) ×σ(p2

k2) ....... ×σ(pr
kr)

being an odd integer, either n ≡ 1(mod 4) or n ≡ 3(mod 4)

being an odd integer, either n ≡ 1(mod 4) or n ≡ 3(mod 4); in any event,

2n ≡ 2(mod 4). Thus , σ(n) = 2n is divisible by 2, but not by 4. The

implication is that one of the σ(pi
ki), say σ(pi

ki), must be an even integer

(but not divisible by 4), and all the remaining σ(pi
ki)’s are odd integers.

For a given pi , there are two cases to be considered:

pi ≡ 1(mod 4) and pi ≡ 3(mod 4). If pi ≡ 3 ≡ −1(mod 4), we would have,
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σ(pi
ki) = 1 + pi + pi

2 + .......+ pi
ki

≡ 1 + (−1) + (−1)2 + ...........+ (−1)ki(mod 4)

≡

0(mod 4) if ki is odd

1(mod 4) if ki is even

since σ(pi
ki) ≡ 2(mod 4), this tells us that p1 ̸≡ 3(mod 4) or, to put it affir-

matively, p1 ≡ 1(mod 4). Furthermore, the congruence σ(pi
ki) ≡ 0(mod 4)

signifies that 4 divides σ(pi
ki) which is not possible.

The conclusion : if pi ≡ 3(mod 4) where i = 2, ........, r then it’s exponent ki

must be an even integer.

Should it happen that pi ≡ 1(mod 4) which is certainly true for i=1,then

σ(pi
ki) = 1 + pi + pi

2 + ..............+ pi
k

≡ 1 + 11 + 12 + ..........+ 1ki(mod 4)

≡ ki + 1(mod 4)

The condition σ(pi
ki) ≡ 2(mod 4) for as k1 ≡ 1(mod 4).For the other

values of i, we know that σ(pi
ki) ≡ 1 or 3(mod 4), and therefore ki ≡

0 or 2(mod 4); in any case ki is an even integer. The crucial point is that,

regardless of whether pi ≡ 1(mod 4) or pi ≡ 3(mod 4), ki is always for i ̸= 1.

Our proof is now complete.

Remark 2.4. In view of the preceding theorem, any odd perfect number n

can be expressed as

n = p1
k1p2

2j2 ............pr
2jr

= pk11 (p2
j2 ..........pjrr )

2

= p1
k1m2

This leads directly to the following corollary.
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corollary 2.5.1. If n is an odd perfect number, then n is of the form n =

pkm2. Where p is a prime, p does not divides m, and p ≡ k ≡ 1(mod 4); in

particular, n = 1(mod 4)

proof

Only the last assertion is not obvious.Because p ≡ 1(mod 4), we have

pk ≡ 1(mod 4).Notice that m must be odd; hence m ≡ 1 or 3(mod 4), and

therefore upon squaring, m2 ≡ 1(mod 4). It follows that

n = pkm2 ≡ 1× 1 ≡ 1(mod 4)

establishing our corollary.

definition 2.2. Two numbers such as 220 and 284 are called amicable, or

friendly; because they have the remarkable property that each number is ”

contained” within the other, in the sense that each number is equal to the

sum of all the positive divisors of the other , not counting the number it-

self.Thus, as regards the divisors 220

1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284

and for 284,

1 + 2 + 4 + 71 + 142 = 220

In terms of the σ function, amicable numbers m and n (or an amicable

pair) are defined by the equation.

σ(m)−m = n

σ(n)− n = m

or what amounts to the same thing;

σ(m) = m+ n = σ(n)
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Remark 2.5. Amicable number have been important in magic and astrol-

ogy, and casting horoscope, making talismans. The Greeks believed that these

numbers had a particular influence in establishing friendship between indi-

viduals.
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CHAPTER 3

FERMAT NUMBERS

3 Fermat Numbers:

definition 3.1. A Fermat number is an integer of the form

Fn = 22
n
+ 1, n ≥ 0

If Fn is prime, it is said to be a fermat prime.

Remark 3.1. F0 = 3, F1 = 5, F2 = 17 F3 = 257, F4 = 65537 and F5 =

22
5
+ 1 = 4294967297

Theorem 3.1. The fermat number F5 is divisible by 641

proof

We begin by putting a = 27 and b = 5, so that

1 + ab = 1 + (27 × 5) = 641

It is easily seen that

1 + ab− b4 = 1 + (a− b3)b = 1 + 3b = 24
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But this implies that;

F5 = 22
5
+ 1 = 232 + 1

= (24 × a4) + 1

= (1 + ab− b4)a4 + 1

(1 + ab)a4 + (1− a4b4)

= (1 + ab)[a4 + (1− ab)(1 + a2b2)]

which gives 641|Fn.

Theorem 3.2. For fermat numbers Fn and Fm, wherem > n ≥ 0, gcd(Fm, Fn) =

1.

proof

Put d = gcd(Fm, Fn) = 1. Because Fermat numbers are odd integers, d

must be odd. If we set x = 22
n
and k = 2m−n then

Fm−2
Fn

= (22
n
)2

m−n−1
22n+1

= xk−1
x+1

= xk−1 − xk−2 + .........− 1

hence Fn|(Fm − 2).From d|Fn, it follows that d|(Fm − 2).Now use the fact

that d|Fm to obtain d|2. But d is an odd integer, and so d = 1, establishing

the result is claimed.

Remark 3.2. We know that each of the Fermat numbers F0, F1, F2, ..........FN

is divisible by a prime that does not divide any of the other Fk. Thus, there
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are at least n+1 distinct primes not exceeding Fn.Because there are infinitely

many Fermat numbers, the number of primes is also infinite.

In 1877, the Jesuit priest T.Pepin devised the practical test(Pepin’s test for

determining the primality of Fn that is embodied in the following theorem.)

Theorem 3.3. Pepin’s test; For n ≥ 1, the Fermat number Fn = 22
n
+ 1 is

prime if and only if

3
Fn−1

2 ≡ −1(mod Fn)

proof

First let us assume that,

3
Fn−1

2 ≡ −1(mod Fn)

Upon squaring both sides we get

3Fn−1 ≡ 1(mod Fn)

The same congruence holds for any prime p that divides Fn

3Fn−1 ≡ 1(mod p)

Now let k be the order of 3 modulo p. We know that k|(Fn − 1) or in other

words, that k|22n therefore k must be a power of 2.

It is not possible that k = 2r for any r ≤ 2n − 1

For if this were so, repeated squaring of the congruence 3k ≡ 1(mod p) would

yield

32
2n−1 ≡ 1(mod p)
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or, what is the same thing,

3Fn−1 ≡ 1(mod p)

We would then arrive at 1 ≡ −1(mod p), resulting in p = 2, which is a

contradiction. Thus the only possibility open to us is that

k = 22
n
= Fn − 1

Fermat’s theorem tells us that k ≤ p − 1, which means, in turn, that

Fn = k+1 ≤ p. Because p|Fn, we also have p ≤ Fn.Together, these inequali-

ties mean that Fn = p, so that Fn is prime. On the other hand, suppose that

Fn, n ≥ 1 is prime.

The quadratic Reciprocity Law gives

(3|Fn) = (Fn|3) = (2|3) = −1

When we use the fact that

Fn ≡ (−1)2
n
+ 1 = 2(mod 3)

Applying Euler’s criterion, we end up with

3
Fn−1

2 ≡ −1(mod Fn)

Example 3.1. Show that using Pepin’s test F3 = 257 is prime.

31



proof

3
p3−1

2 = 3128 = 33(35)
25

≡ 27(−14)25

≡ 27× 1424(−14)

≡ 27(17)(−14)

≡ 27× 19 ≡ 513 ≡ −1(mod 257)

So that F3 is prime.

Theorem 3.4. Any prime divisor p of the Fermat number Fn = 22
n
+ 1,

where n ≥ 2, is of the form

p = k × 2(n+2) + 1

proof

For a prime divisor p of Fn,

22
n ≡ −1(mod p)

Which is to say, upon squaring that

22
n+1 ≡ 1(mod p)

If h is the order of 2 modulo p, this congruence tells us that h|2n+1.We cannot

have h = 2r where 1 ≤ r ≤ n, for this would lead to 22
n ≡ 1(mod p) and in

turn, to the contradiction that p = 2.This let us conclude that h = 2n+1. Be-

cause the order of 2 modulo p divides ϕ(p) = p− 1, we may further conclude

that 2n+1|p− 1.The point is that for n ≥ 2, p ≡ 1(mod 8), and therefore, by

theorem, if p is an odd number then 2|p, the Legendre symbol (2|P ) = 1.
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Using Euler’s criterion, we immediately pass to

2
(p−1)

2 ≡ (2|p) = 1(mod p)

An appeal to theorem ” let the integer a have order k modulo n, then

ah ≡ 1(mod n) if and only if k|n, in particular, k|ϕ(n), ” finishes the proof.

It asserts that h| (p−1)
2

, or equivalently, 2(n+1)| (p−1)
2

.This forces 2n+2|(p− 1)

and we obtain p = k × 2(n+2) + 1 for some integer k.
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CONCLUSION
Number theory is the study of the integers and related objects.Topics studied

by number theorists include the problem of determining the distribution of

prime numbers within the integers and the structure and number of solutions

of polynomial equations with integer co-effecients.

A branch of pure mathematics that deals with the study of natural numbers

and the study deals with the set of positive whole numbers that are usually

called the set of natural numbers and is partly experimental and partly the-

oretical.

Number theory is necessary for the study of numbers because it shows

what numbers can do. It helps in providing valuable training in logical

thinking and studying the relationship between different kinds of numbers.

It is applied in cryptography, device authentication, websites for e-commerce,

coding, and security systems.
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INTRODUCTION
Number theory(or arithmetic or higher arithmetic in older us-

age) is a branch of pure mathematics devoted primarily to the study of the

integers and integer-valued functions.German mathematician Carl Friedrich

Gauss (1777-1855) said, ”Mathematics is the queen of the sciences - and

number theory is the queen of mathematics.

In accordance with the research methods and objectives, we briefly divide

number theory into four classes; Elementary number theory, Analytic num-

ber theory, Algebraic number theory and Geometric number theory. Here we

only deals with the Elementary number theory.

Elementary number theory is also known as classical number theory.It

is the basic theory for studying divisibility,congruences , diophantine equa-

tions etc, mainly by means of the four fundamental rules. It requires no long

preliminary training, the content is tangible and more than any other path

of mathematics, the methods of inquiry adhere to the scientific approach.

Applications of number theory:

Here are some of the most important applications of number theory. Number

theory is used to find some of the important divisibility tests, whether a given

integer m divides the integer n. Number theory have countless applications

in mathematics as well in practical applications such as :

1) Security system like in banking securities.

2) E-commerce websites.

3) Coding theory.

4) Bar codes.

5) Making of modular designs.

6) Memory management system.

7) Authentication system.
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It is also defined in hash functions, linear congruences, pseudo random num-

bers and fast arithmetic operations.
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PRELIMINARIES

DIVISOR:

A divisor is a number that divides another number either completely or with

a remainder.

GEOMETRIC PROGRESSION:

A geometric progression or a geometric sequence is the sequence , in which

each term is varied by another by a common ratio. The next term of the

sequence is produced when we multiply a constant(which is non-zero) to the

preceding term. It is represented by:

a, ar, ar2, ar3, ar4 and so on.

where a is the first term and r is the common ratio.

GCD:

The greatest common divisor of two or more numbers is the greatest common

factor number that divides them, exactly.

It is also called called the highest common factor (HCF).

Suppose 4, 8 and 16 are three numbers .Then the factors of 4, 8 and 16 are:

4− 1, 2, 4

8− 1, 2, 4, 8

16− 1, 2, 4, 8, 16
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Therefore we can conclude that 4 is the highest common factor among all

three numbers.

COMPOSITE:

In mathematics composite numbers are that have more than two factors.

example:

factors of 6 are 1,2,3 and 6, which are four factors in total

PRIME:

Prime numbers are the positive integers having only two factors, 1 and the

integer itself.

For example:

factors of 7 are only 1 and 7, totally two.

HYPOTHESIS:

Hypothesis is a proposition that is consistent with known data , but has been

neither verified nor shown to be false.

RELATIVELY PRIME:

Two integers a and b, not both of which are zero, are said to be relatively

prime whenever gcd(a, b) = 1.

example:

4− 1, 2, 4

and 15− 1, 3, 5

Here gcd(4, 15) = 1.
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Hence they are relatively prime.

CONGRUENT MODULO n:

Let n be a fixed positive integer. Two integers a and b are said to be congru-

ent modulo n, symbolized by a ≡ b(mod n) if n divides the difference a− b;

that is provided that a− b = kn for some integer k.

AMICABLE NUMBER:

Two numbers are amicable if each is equal to the sum of the proper divisors

of the other (for example, 220 and 284).

PRIMALITY:

Primality:the property of being a prime number.

EULER’S CRITERION

Euler’s criterion is a formula for determining whether an integer is a

quadratic residue modulo a prime. Precisely,

Let p be an odd prime and a be an integer coprime to p. Then

a(p−1)/2 ≡

1 (mod p) if there is an integer x such that a ≡ x2 (mod p),

−1 (mod p) if there is no such integer.

Euler’s criterion can be concisely reformulated using the Legendre sym-

bol: (a/p) = a(p−1)/2 (mod p)
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FERMAT’S THEOREM:

Let p be a prime and suppose that p doesn’t divide a. Then ap−1≡1(mod p).

PURE MATHEMATICS:

Pure mathematics is the study of mathematical concepts independently of

any application outside mathematics.
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CHAPTER 1

PERFECT NUMBERS

1 Perfect Numbers

The history of the theory of numbers abounds with famous conjectues and

open questions. this topic focuses on some of the intriguing congectures

associated with perfect numbers.

A few of these have been satisfactorily answered, but most remain unresolved.

Example 1.1. The pythagoreans considered it rather remarkable that the

number 6 is equal to the sum of its positive divisors,other than itself.

6=1+2+3

The next number after 6 having this feature is 28; for the positive divisors

of 28 are found to be 1,2,4,7,14 and 28.

28=1+2+4+7+14

And the pythagoreans called such numbers ’perfect’.

definition 1.1. A positive integer n is said to be perfect if n is equal to the

sum of all its positive divisors,excluding n itself.

The sum of the positive divisors of an integer n,each of them less than

n, is given by σ(n) − n = n. Thus, the condition ”n is perfect” amounts to

asking that σ(n)− n = n or equivalently that σ(n) = 2n
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EXAMPLE

σ(6) = 1 + 2 + 3 + 6 = 2 ∗ 6
σ(28) = 1 + 2 + 4 + 7 + 14 + 28 = 2 ∗ 28

it was partially solved by Euclid when he proved that if the sum

1 + 2 + 22 + 23 + ......+ 2k−1 = p

is a prime number, then 2k−1p is a perfect number(of necessity even). For

instance, 1+2+4=7 is a prime. Hence 4*7=28 is a perfect number. Euclid’s

arguments makes use of the formula for the sum of a geometric progression

1 + 2 + 22 + 23 + .......+ 2k−1 = 2k−1.

in this notation, the result reads as follows:

If 2k−1 is prime (k > 1), then n = 2k−1(2k − 1) is a perfect number.

Theorem 1.1. If 2k − 1 is prime (k > 1), then n = 2k−1(2k − 1) is perfect

and every even perfect number is of this form.

proof

Let 2k − 1 = p , a prime, and consider the integer n = 2k−1p. In as much as

gcd(2k−1, p) = 1, the multiplicativity of σ entails that

σ(n) = σ(2k−1p)

= σ(2k−1)σ(p)

= (2k−1)(p+ 1)
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(2k − 1)(2k) = 2n

making n a perfect number. Now conversely assume that n is an even perfect

number. we may write n as n = 2k−1m , where m is an odd integer and

k ≥ 2. It follows from gcd(2k−1,m) = 1 that

σ(n) = σ(2k−1m)

= σ(2k−1)σ(m)

= (2k−1)σ(m)

whereas the requirement for a number to be perfect gives

σ(n) = 2n = 2km

Together these relations yield

2km = (2k − 1)σ(m) .........(1)

=⇒ (2k−1)|2km. But 2k − 1and2k are relatively prime, whence (2k − 1)|m;

hence m = (2k − 1)M . Now, substituting this value of m into the equation

(1) and cancelling 2k − 1 is that σ(m) = 2kM . Because m and M are both

divisors of m (withM < m), we have

2kM = σ(m) ≥ m+M = 2kM

leading to σ(m) = m+M. The implication of this equality is that m has

only two positive divisors to it , M and m itself.

It must be that m is prime and M=1 ; in other words

m = (2k−1M)

= 2k − 1

Is a prime number, and hence the proof.
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Remark 1.1. Here our problem of finding even perfect number is reduced to

the search for primes of the form 2k− 1, a closer look at these integers might

be truthful.One thing that can be provided is that 2k−1 is a prime number, then

the exponent k must itself be prime. More generally we have the following

lemma.

Lemma 1.1. If ak − 1is prime (a > 0, k ≥ 2) then a=2 and k is also prime.

proof

ak − 1 = (a− 1)(ak−1 + ak−2 + ..........+ a+ 1)

where in the present setting,

ak−1 + ak−2 + ........+ a+ 1 ≥ a+ 1 > 1

because by the hypothesis ak−1 is prime, the other factor must be 1; that is,

a-1 = 1 so that a = 2.

If k were composite, then we could write k = rs with 1 < r and 1 < s. Thus

ak − 1 = (ar)s − 1

= (ar − 1)(ar(s−1) + ar(s−2) + ..........+ ar + 1)

and each factor on the right is plainly greater than 1. But this violates the

primality of ak − 1, so that by contradiction k must be prime.

Remark 1.2. For p = 2, 3, 5, 7 the values 3, 7, 31, 127 of 2p − 1 are primes.

so that

2(22 − 1) = 6

22(23 − 1) = 28

24(25 − 1) = 496

26(27 − 1) = 8128

15



are all perfect numbers.Many early writers erroneously believed that 2p − 1

is prime for every choice of prime number p.

But we have,

211 − 1 = 2047 = (23)(89) , not prime.

But when p = 13, 2p − 1 is prime and 212(213 − 1) = 33550336 be the fifth

perfect number.

Therefore, we can say that 2p − 1 is prime and it is possible only when p is

prime.

Theorem 1.2. An even perfect number n ends in the digit 6 or 8 equivalently

either

n ≡ 6(mod 10) or n ≡ 8(mod 10)

proof

Being an even perfect number n may be represented as n = 2k−1(2k − 1),

where 2k − 1 is a prime. According to the last lemma, the exponent k must

also be prime. If k = 2, then n = 6, and the asserted result holds. We may

therefore confine our assumption to case k > 2.

The proof falls into two parts, according as k takes the form 4m+1 or 4m+3.

If k is of the form 4m+1 then

n = 24m(24m+1 − 1)

= 28k+1 − 24m

= (2 ∗ 162m)− 16m

16



161 ≡ 6(mod 10) also

16t ≡ 6(mod 10) for any positive integer ’t’

Therefore we get, n = (2 ∗ 6)− 6 ≡ 6(mod 10)

Now in the case in which k= 4m+3

n = 24m+2(24m+3 − 1)

= 28m+5 − 24m+2

= (2 ∗ 162m+1)− (4 ∗ 16m)

Falling back on the fact that 16t ≡ 6(mod 10), we see that

n ≡ (2 ∗ 6)− (4 ∗ 6) ≡ −12 ≡ 8(mod 10)

ie, n ≡ 8(mod 10)

consequently, every even perfect number has a last digit equal to 6 or 8

Remark 1.3. An even perfect number n = 2k−1 ∗ (2k−1) always ends in the

digit 6 or 28. Because an integer is congruent modulo 100 to it’s last two dig-

its, it suffices to prove that, if k is of the form 4m+3, then n ≡ 28(mod 100).

To see this, note that

2k−1 = 24m+2

= (16m)(4)

≡ (6)(4)

≡ 4(mod 10)

Moreover, for k > 2 we have 4|2k−1, and therefore the number formed by

the last two digits of 2k−1 is divisible by 4, and 4 divides the last two digits

modulo 100, the various possibilities are

17



2k−1 ≡ 4, 24, 44, 64or84

But this implies that

2k − 1 = 2 ∗ 2k−1 ≡ 7, 47, 87, 27 or 67(mod 100)

hence

n = 2k−1(2k − 1)

≡ 4 ∗ 7, 24 ∗ 47, 44 ∗ 87, 64 ∗ 24 or 84 ∗ 67(mod 100)
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CHAPTER 2

MERSENNE PRIME

2 Mersenne Prime

It has became traditional to call numbers of the form Mn = 2n − 1, n ≥ 1

Mersenne numbers after father Marin Mersenne who made an incorrect but

provocative assertion concerning their primality.

definition 2.1. Mersenne numbers that happens to be prime are said to be

Mersenne primes.

Remark 2.1. Mp is prime for p = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257 and

composite for all other primes p < 257

Theorem 2.1. If p and q = 2p+1 are primes, then their q|Mp or q|Mp +2.

proof

With reference to Fermat’s theorem, we know that

2q−1 − 1 ≡ 0(modq)

and factorising the left hand side,that

(2(q−1)/2 − 1)(2(q−1)/2 + 1) = (2p − 1)(2p + 1) ≡ 0(mod q)
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ie, (2p − 1)(2p + 1) ≡ 0(mod q)

=⇒ (2p − 1)(2p − 1 + 2) ≡ 0(mod q)

=⇒ Mp(Mp + 2) ≡ 0(mod q)

By using the theorem, ”if p is a prime and p|ab, then p|a or p|b ”, we cannot
have both q|Mp and q|Mp + 2, for then q|2 , which is impossible therefore

either q|Mp or q|Mp + 2.

Example 2.1. A simple application should suffice to illustrate the above the-

orem if p = 23, then q = 2p+1 = 47 is also a prime, so that we may consider

the case of M23

The questions reduces to one of whether 47|M23 or to put it differently,

whether 223 ≡ 1(mod 47)

now we have

223 ≡ 23(25)
4 ≡ 23(−15)4(mod 47)

(−15)4 ≡ (225)2 ≡ (−10)2 ≡ 6(mod 47)

putting these two congruences together, it is seen that

223 ≡ 23 ∗ 6 ≡ 48 ≡ 1(mod 47)

hence M23 is composite.

Theorem 2.2. If q = 2n+ 1 is prime, then

a) q|Mn , provided that q ≡ 1(mod 8) or q ≡ 7(mod 8)

b) q|Mn + 2, provided that q ≡ 3(mod 8) or q ≡ 5(mod 8)

20



proof

To say that q|Mn is equivalent to asserting that

2(q−1)/2 = 2n ≡ 1(mod q) .........(∗ ∗ ∗)
2n − 1 ≡ 0(mod q)

In terms of the legendre symbol, the condition (1) becomes the requirement

that (2/q) = 1 but according to the theorem, if p is an odd prime then,

(2/q) =

1, if p ≡ 1(mod 8) or p ≡ 7(mod 8)

(−1), if p ≡ 3(mod 8) or p ≡ 5(mod 8)

we get (2/q) = 1 when we have q ≡ 1(mod 8) or q ≡ 7(mod 8)

the proof of (b) proceeds along similar lines.

we get (q|mn + 2) provided that q ≡ 3(mod 8) or q ≡ 5(mod 8)

corollary 2.2.1. If p and q = 2p+1 are both odd primes, with p = 3(mod 4),

then q|Mp

proof

An odd prime p is either of the form 4k+1 or 4k+2. If p = 4k+3 , then

q = 2(4k + 3) + 1

= 8k + 7

and the above theorem yield q|Mp. since by the condition q|Mn provided

that q ≡ 1(mod 8) . In the case in which p = 4k+1, q = 8k+3 so that q does

not divide Mp, since q is not congruent to 1(mod 8) or q is not congruent to

7(mod 8), hence the theorem.
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Remark 2.2. the following is a partial list of prime numbers p ≡ 3(mod 4)

where q = 2p + 1 is also prime: p = 11, 23, 83, 131, 179, 239, 251.In each

instance,Mp is composite.

Exploring the matter a little further, the next tackle two results of Fermat

that restricted the divisors of Mp

Theorem 2.3. If p is an odd prime, then any prime divisors of Mp is of the

form 2kp + 1

proof

Let q be any prime divisors of Mp, so that 2p ≡ 1(mod q). If 2 has

order k modulo q. (ie if k is the smallest positive integer that satisfies

2k ≡ 1(mod q)),

then theorem ” Let the integer a have order k modulo n. Then ak ≡ 1(mod n)

if and only if k|n; in particular k|ϕ(n) ........(∗)
Tells us that k|p. The case k = 1 cannot arise; for this would imply that

q|1 (since if k = 1, 2k − 1 ≡ 0(mod q) =⇒ q = 1) an impossible situation.

Therefore , because both k|p and k > 1, the primality of p force k = p

In compliance with Fermat’s theorem, we have 2q−1 ≡ 1(mod q), and

again by theorem (∗) k|(q − 1) knowing that k = p , the net result is p|(q − 1).

To be defined , let us put q − 1 = pt; then q = pt + 1 . The proof is

completed by noting that if t were an odd integer, then q would be even and

a contradiction occurs. Hence , we must have q = 2kp + 1. For some choice

of k, which gives q the required form.

Theorem 2.4. If p is an odd prime , then any prime divisor q of mp is of

the form q ≡ ±1(mod 8).
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proof

Suppose that q = 2n+ 1 is a prime divisor of mp.

If a = 2(p+1)/2, then

a2 − 2 = (2(p+1)/2)2 − 2

= 2p+1 − 2

= 2p × 2− 2

= 2(2p − 1)

= 2Mp

≡ 0(mod q)

Raising both sides of the congruence a2 ≡ 2(mod q) to the nth power, we

get

aq−1 = a2n ≡ 2n(mod q)

Since q is an odd integer , one has gcd(a, q) = 1 and so aq−1 ≡ 1(mod q). In

conjunction, the last congruence tell us that

2n ≡ 1(mod q)

=⇒ 2n − 1 ≡ 0(mod q)

=⇒ q|Mn

the theorem (∗ ∗ ∗) now be brought into play to reach the condition that

q ≡ ±1(mod 8)

Therefore we get if p is an odd prime then any prime divisor q of Mp is of

the form

q ≡ ±1(mod 8)

hence the theorem.
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Remark 2.3. For an illustration of how these theorems can be used, one

might look at M17. These integers of the form 34k + 1 that are less than

362 <
√
M17 are 35, 69, 103, 137, 171, 205, 239, 273, 307, 341.

Because the smallest (non-trivial) divisors of M17 must be prime, we need

only consider the primes among the foregoing 10 numbers namely, 103, 137, 239, 307

the work can be shortened some what by noting that 307 is not congruent

to ±1(mod 8), and therefore we may delete 307 from our list.Now, either

M17 is prime or one of the three remaining possibilities divide it with a little

calculations we can check that M17 is divisible by none of 103, 137, and 239;

the result M17 is prime.

Theorem 2.5. EULER: If n is a perfect number, then any n = p1
k1p2

k2 .......pr
kr

where the p′is are distinct odd primes and p1 ≡ k1 ≡ 1(mod 4).

proof

Let n = n = p1
k1p2

k2 .......pr
kr be the prime factorisation of n. Because n

is perfect.We can write

2n = σ(n) = σ(p1
k1) ×σ(p2

k2) ....... ×σ(pr
kr)

being an odd integer, either n ≡ 1(mod 4) or n ≡ 3(mod 4)

being an odd integer, either n ≡ 1(mod 4) or n ≡ 3(mod 4); in any event,

2n ≡ 2(mod 4). Thus , σ(n) = 2n is divisible by 2, but not by 4. The

implication is that one of the σ(pi
ki), say σ(pi

ki), must be an even integer

(but not divisible by 4), and all the remaining σ(pi
ki)’s are odd integers.

For a given pi , there are two cases to be considered:

pi ≡ 1(mod 4) and pi ≡ 3(mod 4). If pi ≡ 3 ≡ −1(mod 4), we would have,
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σ(pi
ki) = 1 + pi + pi

2 + .......+ pi
ki

≡ 1 + (−1) + (−1)2 + ...........+ (−1)ki(mod 4)

≡

0(mod 4) if ki is odd

1(mod 4) if ki is even

since σ(pi
ki) ≡ 2(mod 4), this tells us that p1 ̸≡ 3(mod 4) or, to put it affir-

matively, p1 ≡ 1(mod 4). Furthermore, the congruence σ(pi
ki) ≡ 0(mod 4)

signifies that 4 divides σ(pi
ki) which is not possible.

The conclusion : if pi ≡ 3(mod 4) where i = 2, ........, r then it’s exponent ki

must be an even integer.

Should it happen that pi ≡ 1(mod 4) which is certainly true for i=1,then

σ(pi
ki) = 1 + pi + pi

2 + ..............+ pi
k

≡ 1 + 11 + 12 + ..........+ 1ki(mod 4)

≡ ki + 1(mod 4)

The condition σ(pi
ki) ≡ 2(mod 4) for as k1 ≡ 1(mod 4).For the other

values of i, we know that σ(pi
ki) ≡ 1 or 3(mod 4), and therefore ki ≡

0 or 2(mod 4); in any case ki is an even integer. The crucial point is that,

regardless of whether pi ≡ 1(mod 4) or pi ≡ 3(mod 4), ki is always for i ̸= 1.

Our proof is now complete.

Remark 2.4. In view of the preceding theorem, any odd perfect number n

can be expressed as

n = p1
k1p2

2j2 ............pr
2jr

= pk11 (p2
j2 ..........pjrr )

2

= p1
k1m2

This leads directly to the following corollary.

25



corollary 2.5.1. If n is an odd perfect number, then n is of the form n =

pkm2. Where p is a prime, p does not divides m, and p ≡ k ≡ 1(mod 4); in

particular, n = 1(mod 4)

proof

Only the last assertion is not obvious.Because p ≡ 1(mod 4), we have

pk ≡ 1(mod 4).Notice that m must be odd; hence m ≡ 1 or 3(mod 4), and

therefore upon squaring, m2 ≡ 1(mod 4). It follows that

n = pkm2 ≡ 1× 1 ≡ 1(mod 4)

establishing our corollary.

definition 2.2. Two numbers such as 220 and 284 are called amicable, or

friendly; because they have the remarkable property that each number is ”

contained” within the other, in the sense that each number is equal to the

sum of all the positive divisors of the other , not counting the number it-

self.Thus, as regards the divisors 220

1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284

and for 284,

1 + 2 + 4 + 71 + 142 = 220

In terms of the σ function, amicable numbers m and n (or an amicable

pair) are defined by the equation.

σ(m)−m = n

σ(n)− n = m

or what amounts to the same thing;

σ(m) = m+ n = σ(n)
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Remark 2.5. Amicable number have been important in magic and astrol-

ogy, and casting horoscope, making talismans. The Greeks believed that these

numbers had a particular influence in establishing friendship between indi-

viduals.
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CHAPTER 3

FERMAT NUMBERS

3 Fermat Numbers:

definition 3.1. A Fermat number is an integer of the form

Fn = 22
n
+ 1, n ≥ 0

If Fn is prime, it is said to be a fermat prime.

Remark 3.1. F0 = 3, F1 = 5, F2 = 17 F3 = 257, F4 = 65537 and F5 =

22
5
+ 1 = 4294967297

Theorem 3.1. The fermat number F5 is divisible by 641

proof

We begin by putting a = 27 and b = 5, so that

1 + ab = 1 + (27 × 5) = 641

It is easily seen that

1 + ab− b4 = 1 + (a− b3)b = 1 + 3b = 24
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But this implies that;

F5 = 22
5
+ 1 = 232 + 1

= (24 × a4) + 1

= (1 + ab− b4)a4 + 1

(1 + ab)a4 + (1− a4b4)

= (1 + ab)[a4 + (1− ab)(1 + a2b2)]

which gives 641|Fn.

Theorem 3.2. For fermat numbers Fn and Fm, wherem > n ≥ 0, gcd(Fm, Fn) =

1.

proof

Put d = gcd(Fm, Fn) = 1. Because Fermat numbers are odd integers, d

must be odd. If we set x = 22
n
and k = 2m−n then

Fm−2
Fn

= (22
n
)2

m−n−1
22n+1

= xk−1
x+1

= xk−1 − xk−2 + .........− 1

hence Fn|(Fm − 2).From d|Fn, it follows that d|(Fm − 2).Now use the fact

that d|Fm to obtain d|2. But d is an odd integer, and so d = 1, establishing

the result is claimed.

Remark 3.2. We know that each of the Fermat numbers F0, F1, F2, ..........FN

is divisible by a prime that does not divide any of the other Fk. Thus, there
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are at least n+1 distinct primes not exceeding Fn.Because there are infinitely

many Fermat numbers, the number of primes is also infinite.

In 1877, the Jesuit priest T.Pepin devised the practical test(Pepin’s test for

determining the primality of Fn that is embodied in the following theorem.)

Theorem 3.3. Pepin’s test; For n ≥ 1, the Fermat number Fn = 22
n
+ 1 is

prime if and only if

3
Fn−1

2 ≡ −1(mod Fn)

proof

First let us assume that,

3
Fn−1

2 ≡ −1(mod Fn)

Upon squaring both sides we get

3Fn−1 ≡ 1(mod Fn)

The same congruence holds for any prime p that divides Fn

3Fn−1 ≡ 1(mod p)

Now let k be the order of 3 modulo p. We know that k|(Fn − 1) or in other

words, that k|22n therefore k must be a power of 2.

It is not possible that k = 2r for any r ≤ 2n − 1

For if this were so, repeated squaring of the congruence 3k ≡ 1(mod p) would

yield

32
2n−1 ≡ 1(mod p)

30



or, what is the same thing,

3Fn−1 ≡ 1(mod p)

We would then arrive at 1 ≡ −1(mod p), resulting in p = 2, which is a

contradiction. Thus the only possibility open to us is that

k = 22
n
= Fn − 1

Fermat’s theorem tells us that k ≤ p − 1, which means, in turn, that

Fn = k+1 ≤ p. Because p|Fn, we also have p ≤ Fn.Together, these inequali-

ties mean that Fn = p, so that Fn is prime. On the other hand, suppose that

Fn, n ≥ 1 is prime.

The quadratic Reciprocity Law gives

(3|Fn) = (Fn|3) = (2|3) = −1

When we use the fact that

Fn ≡ (−1)2
n
+ 1 = 2(mod 3)

Applying Euler’s criterion, we end up with

3
Fn−1

2 ≡ −1(mod Fn)

Example 3.1. Show that using Pepin’s test F3 = 257 is prime.
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proof

3
p3−1

2 = 3128 = 33(35)
25

≡ 27(−14)25

≡ 27× 1424(−14)

≡ 27(17)(−14)

≡ 27× 19 ≡ 513 ≡ −1(mod 257)

So that F3 is prime.

Theorem 3.4. Any prime divisor p of the Fermat number Fn = 22
n
+ 1,

where n ≥ 2, is of the form

p = k × 2(n+2) + 1

proof

For a prime divisor p of Fn,

22
n ≡ −1(mod p)

Which is to say, upon squaring that

22
n+1 ≡ 1(mod p)

If h is the order of 2 modulo p, this congruence tells us that h|2n+1.We cannot

have h = 2r where 1 ≤ r ≤ n, for this would lead to 22
n ≡ 1(mod p) and in

turn, to the contradiction that p = 2.This let us conclude that h = 2n+1. Be-

cause the order of 2 modulo p divides ϕ(p) = p− 1, we may further conclude

that 2n+1|p− 1.The point is that for n ≥ 2, p ≡ 1(mod 8), and therefore, by

theorem, if p is an odd number then 2|p, the Legendre symbol (2|P ) = 1.
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Using Euler’s criterion, we immediately pass to

2
(p−1)

2 ≡ (2|p) = 1(mod p)

An appeal to theorem ” let the integer a have order k modulo n, then

ah ≡ 1(mod n) if and only if k|n, in particular, k|ϕ(n), ” finishes the proof.

It asserts that h| (p−1)
2

, or equivalently, 2(n+1)| (p−1)
2

.This forces 2n+2|(p− 1)

and we obtain p = k × 2(n+2) + 1 for some integer k.
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CONCLUSION
Number theory is the study of the integers and related objects.Topics studied

by number theorists include the problem of determining the distribution of

prime numbers within the integers and the structure and number of solutions

of polynomial equations with integer co-effecients.

A branch of pure mathematics that deals with the study of natural numbers

and the study deals with the set of positive whole numbers that are usually

called the set of natural numbers and is partly experimental and partly the-

oretical.

Number theory is necessary for the study of numbers because it shows

what numbers can do. It helps in providing valuable training in logical

thinking and studying the relationship between different kinds of numbers.

It is applied in cryptography, device authentication, websites for e-commerce,

coding, and security systems.
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INTRODUCTION
Number theory(or arithmetic or higher arithmetic in older us-

age) is a branch of pure mathematics devoted primarily to the study of the

integers and integer-valued functions.German mathematician Carl Friedrich

Gauss (1777-1855) said, ”Mathematics is the queen of the sciences - and

number theory is the queen of mathematics.

In accordance with the research methods and objectives, we briefly divide

number theory into four classes; Elementary number theory, Analytic num-

ber theory, Algebraic number theory and Geometric number theory. Here we

only deals with the Elementary number theory.

Elementary number theory is also known as classical number theory.It

is the basic theory for studying divisibility,congruences , diophantine equa-

tions etc, mainly by means of the four fundamental rules. It requires no long

preliminary training, the content is tangible and more than any other path

of mathematics, the methods of inquiry adhere to the scientific approach.

Applications of number theory:

Here are some of the most important applications of number theory. Number

theory is used to find some of the important divisibility tests, whether a given

integer m divides the integer n. Number theory have countless applications

in mathematics as well in practical applications such as :

1) Security system like in banking securities.

2) E-commerce websites.

3) Coding theory.

4) Bar codes.

5) Making of modular designs.

6) Memory management system.

7) Authentication system.
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It is also defined in hash functions, linear congruences, pseudo random num-

bers and fast arithmetic operations.
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PRELIMINARIES

DIVISOR:

A divisor is a number that divides another number either completely or with

a remainder.

GEOMETRIC PROGRESSION:

A geometric progression or a geometric sequence is the sequence , in which

each term is varied by another by a common ratio. The next term of the

sequence is produced when we multiply a constant(which is non-zero) to the

preceding term. It is represented by:

a, ar, ar2, ar3, ar4 and so on.

where a is the first term and r is the common ratio.

GCD:

The greatest common divisor of two or more numbers is the greatest common

factor number that divides them, exactly.

It is also called called the highest common factor (HCF).

Suppose 4, 8 and 16 are three numbers .Then the factors of 4, 8 and 16 are:

4− 1, 2, 4

8− 1, 2, 4, 8

16− 1, 2, 4, 8, 16

8



Therefore we can conclude that 4 is the highest common factor among all

three numbers.

COMPOSITE:

In mathematics composite numbers are that have more than two factors.

example:

factors of 6 are 1,2,3 and 6, which are four factors in total

PRIME:

Prime numbers are the positive integers having only two factors, 1 and the

integer itself.

For example:

factors of 7 are only 1 and 7, totally two.

HYPOTHESIS:

Hypothesis is a proposition that is consistent with known data , but has been

neither verified nor shown to be false.

RELATIVELY PRIME:

Two integers a and b, not both of which are zero, are said to be relatively

prime whenever gcd(a, b) = 1.

example:

4− 1, 2, 4

and 15− 1, 3, 5

Here gcd(4, 15) = 1.
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Hence they are relatively prime.

CONGRUENT MODULO n:

Let n be a fixed positive integer. Two integers a and b are said to be congru-

ent modulo n, symbolized by a ≡ b(mod n) if n divides the difference a− b;

that is provided that a− b = kn for some integer k.

AMICABLE NUMBER:

Two numbers are amicable if each is equal to the sum of the proper divisors

of the other (for example, 220 and 284).

PRIMALITY:

Primality:the property of being a prime number.

EULER’S CRITERION

Euler’s criterion is a formula for determining whether an integer is a

quadratic residue modulo a prime. Precisely,

Let p be an odd prime and a be an integer coprime to p. Then

a(p−1)/2 ≡

1 (mod p) if there is an integer x such that a ≡ x2 (mod p),

−1 (mod p) if there is no such integer.

Euler’s criterion can be concisely reformulated using the Legendre sym-

bol: (a/p) = a(p−1)/2 (mod p)
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FERMAT’S THEOREM:

Let p be a prime and suppose that p doesn’t divide a. Then ap−1≡1(mod p).

PURE MATHEMATICS:

Pure mathematics is the study of mathematical concepts independently of

any application outside mathematics.

11



CHAPTER 1

PERFECT NUMBERS

1 Perfect Numbers

The history of the theory of numbers abounds with famous conjectues and

open questions. this topic focuses on some of the intriguing congectures

associated with perfect numbers.

A few of these have been satisfactorily answered, but most remain unresolved.

Example 1.1. The pythagoreans considered it rather remarkable that the

number 6 is equal to the sum of its positive divisors,other than itself.

6=1+2+3

The next number after 6 having this feature is 28; for the positive divisors

of 28 are found to be 1,2,4,7,14 and 28.

28=1+2+4+7+14

And the pythagoreans called such numbers ’perfect’.

definition 1.1. A positive integer n is said to be perfect if n is equal to the

sum of all its positive divisors,excluding n itself.

The sum of the positive divisors of an integer n,each of them less than

n, is given by σ(n) − n = n. Thus, the condition ”n is perfect” amounts to

asking that σ(n)− n = n or equivalently that σ(n) = 2n

12



EXAMPLE

σ(6) = 1 + 2 + 3 + 6 = 2 ∗ 6
σ(28) = 1 + 2 + 4 + 7 + 14 + 28 = 2 ∗ 28

it was partially solved by Euclid when he proved that if the sum

1 + 2 + 22 + 23 + ......+ 2k−1 = p

is a prime number, then 2k−1p is a perfect number(of necessity even). For

instance, 1+2+4=7 is a prime. Hence 4*7=28 is a perfect number. Euclid’s

arguments makes use of the formula for the sum of a geometric progression

1 + 2 + 22 + 23 + .......+ 2k−1 = 2k−1.

in this notation, the result reads as follows:

If 2k−1 is prime (k > 1), then n = 2k−1(2k − 1) is a perfect number.

Theorem 1.1. If 2k − 1 is prime (k > 1), then n = 2k−1(2k − 1) is perfect

and every even perfect number is of this form.

proof

Let 2k − 1 = p , a prime, and consider the integer n = 2k−1p. In as much as

gcd(2k−1, p) = 1, the multiplicativity of σ entails that

σ(n) = σ(2k−1p)

= σ(2k−1)σ(p)

= (2k−1)(p+ 1)
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(2k − 1)(2k) = 2n

making n a perfect number. Now conversely assume that n is an even perfect

number. we may write n as n = 2k−1m , where m is an odd integer and

k ≥ 2. It follows from gcd(2k−1,m) = 1 that

σ(n) = σ(2k−1m)

= σ(2k−1)σ(m)

= (2k−1)σ(m)

whereas the requirement for a number to be perfect gives

σ(n) = 2n = 2km

Together these relations yield

2km = (2k − 1)σ(m) .........(1)

=⇒ (2k−1)|2km. But 2k − 1and2k are relatively prime, whence (2k − 1)|m;

hence m = (2k − 1)M . Now, substituting this value of m into the equation

(1) and cancelling 2k − 1 is that σ(m) = 2kM . Because m and M are both

divisors of m (withM < m), we have

2kM = σ(m) ≥ m+M = 2kM

leading to σ(m) = m+M. The implication of this equality is that m has

only two positive divisors to it , M and m itself.

It must be that m is prime and M=1 ; in other words

m = (2k−1M)

= 2k − 1

Is a prime number, and hence the proof.
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Remark 1.1. Here our problem of finding even perfect number is reduced to

the search for primes of the form 2k− 1, a closer look at these integers might

be truthful.One thing that can be provided is that 2k−1 is a prime number, then

the exponent k must itself be prime. More generally we have the following

lemma.

Lemma 1.1. If ak − 1is prime (a > 0, k ≥ 2) then a=2 and k is also prime.

proof

ak − 1 = (a− 1)(ak−1 + ak−2 + ..........+ a+ 1)

where in the present setting,

ak−1 + ak−2 + ........+ a+ 1 ≥ a+ 1 > 1

because by the hypothesis ak−1 is prime, the other factor must be 1; that is,

a-1 = 1 so that a = 2.

If k were composite, then we could write k = rs with 1 < r and 1 < s. Thus

ak − 1 = (ar)s − 1

= (ar − 1)(ar(s−1) + ar(s−2) + ..........+ ar + 1)

and each factor on the right is plainly greater than 1. But this violates the

primality of ak − 1, so that by contradiction k must be prime.

Remark 1.2. For p = 2, 3, 5, 7 the values 3, 7, 31, 127 of 2p − 1 are primes.

so that

2(22 − 1) = 6

22(23 − 1) = 28

24(25 − 1) = 496

26(27 − 1) = 8128
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are all perfect numbers.Many early writers erroneously believed that 2p − 1

is prime for every choice of prime number p.

But we have,

211 − 1 = 2047 = (23)(89) , not prime.

But when p = 13, 2p − 1 is prime and 212(213 − 1) = 33550336 be the fifth

perfect number.

Therefore, we can say that 2p − 1 is prime and it is possible only when p is

prime.

Theorem 1.2. An even perfect number n ends in the digit 6 or 8 equivalently

either

n ≡ 6(mod 10) or n ≡ 8(mod 10)

proof

Being an even perfect number n may be represented as n = 2k−1(2k − 1),

where 2k − 1 is a prime. According to the last lemma, the exponent k must

also be prime. If k = 2, then n = 6, and the asserted result holds. We may

therefore confine our assumption to case k > 2.

The proof falls into two parts, according as k takes the form 4m+1 or 4m+3.

If k is of the form 4m+1 then

n = 24m(24m+1 − 1)

= 28k+1 − 24m

= (2 ∗ 162m)− 16m
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161 ≡ 6(mod 10) also

16t ≡ 6(mod 10) for any positive integer ’t’

Therefore we get, n = (2 ∗ 6)− 6 ≡ 6(mod 10)

Now in the case in which k= 4m+3

n = 24m+2(24m+3 − 1)

= 28m+5 − 24m+2

= (2 ∗ 162m+1)− (4 ∗ 16m)

Falling back on the fact that 16t ≡ 6(mod 10), we see that

n ≡ (2 ∗ 6)− (4 ∗ 6) ≡ −12 ≡ 8(mod 10)

ie, n ≡ 8(mod 10)

consequently, every even perfect number has a last digit equal to 6 or 8

Remark 1.3. An even perfect number n = 2k−1 ∗ (2k−1) always ends in the

digit 6 or 28. Because an integer is congruent modulo 100 to it’s last two dig-

its, it suffices to prove that, if k is of the form 4m+3, then n ≡ 28(mod 100).

To see this, note that

2k−1 = 24m+2

= (16m)(4)

≡ (6)(4)

≡ 4(mod 10)

Moreover, for k > 2 we have 4|2k−1, and therefore the number formed by

the last two digits of 2k−1 is divisible by 4, and 4 divides the last two digits

modulo 100, the various possibilities are
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2k−1 ≡ 4, 24, 44, 64or84

But this implies that

2k − 1 = 2 ∗ 2k−1 ≡ 7, 47, 87, 27 or 67(mod 100)

hence

n = 2k−1(2k − 1)

≡ 4 ∗ 7, 24 ∗ 47, 44 ∗ 87, 64 ∗ 24 or 84 ∗ 67(mod 100)
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CHAPTER 2

MERSENNE PRIME

2 Mersenne Prime

It has became traditional to call numbers of the form Mn = 2n − 1, n ≥ 1

Mersenne numbers after father Marin Mersenne who made an incorrect but

provocative assertion concerning their primality.

definition 2.1. Mersenne numbers that happens to be prime are said to be

Mersenne primes.

Remark 2.1. Mp is prime for p = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257 and

composite for all other primes p < 257

Theorem 2.1. If p and q = 2p+1 are primes, then their q|Mp or q|Mp +2.

proof

With reference to Fermat’s theorem, we know that

2q−1 − 1 ≡ 0(modq)

and factorising the left hand side,that

(2(q−1)/2 − 1)(2(q−1)/2 + 1) = (2p − 1)(2p + 1) ≡ 0(mod q)
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ie, (2p − 1)(2p + 1) ≡ 0(mod q)

=⇒ (2p − 1)(2p − 1 + 2) ≡ 0(mod q)

=⇒ Mp(Mp + 2) ≡ 0(mod q)

By using the theorem, ”if p is a prime and p|ab, then p|a or p|b ”, we cannot
have both q|Mp and q|Mp + 2, for then q|2 , which is impossible therefore

either q|Mp or q|Mp + 2.

Example 2.1. A simple application should suffice to illustrate the above the-

orem if p = 23, then q = 2p+1 = 47 is also a prime, so that we may consider

the case of M23

The questions reduces to one of whether 47|M23 or to put it differently,

whether 223 ≡ 1(mod 47)

now we have

223 ≡ 23(25)
4 ≡ 23(−15)4(mod 47)

(−15)4 ≡ (225)2 ≡ (−10)2 ≡ 6(mod 47)

putting these two congruences together, it is seen that

223 ≡ 23 ∗ 6 ≡ 48 ≡ 1(mod 47)

hence M23 is composite.

Theorem 2.2. If q = 2n+ 1 is prime, then

a) q|Mn , provided that q ≡ 1(mod 8) or q ≡ 7(mod 8)

b) q|Mn + 2, provided that q ≡ 3(mod 8) or q ≡ 5(mod 8)
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proof

To say that q|Mn is equivalent to asserting that

2(q−1)/2 = 2n ≡ 1(mod q) .........(∗ ∗ ∗)
2n − 1 ≡ 0(mod q)

In terms of the legendre symbol, the condition (1) becomes the requirement

that (2/q) = 1 but according to the theorem, if p is an odd prime then,

(2/q) =

1, if p ≡ 1(mod 8) or p ≡ 7(mod 8)

(−1), if p ≡ 3(mod 8) or p ≡ 5(mod 8)

we get (2/q) = 1 when we have q ≡ 1(mod 8) or q ≡ 7(mod 8)

the proof of (b) proceeds along similar lines.

we get (q|mn + 2) provided that q ≡ 3(mod 8) or q ≡ 5(mod 8)

corollary 2.2.1. If p and q = 2p+1 are both odd primes, with p = 3(mod 4),

then q|Mp

proof

An odd prime p is either of the form 4k+1 or 4k+2. If p = 4k+3 , then

q = 2(4k + 3) + 1

= 8k + 7

and the above theorem yield q|Mp. since by the condition q|Mn provided

that q ≡ 1(mod 8) . In the case in which p = 4k+1, q = 8k+3 so that q does

not divide Mp, since q is not congruent to 1(mod 8) or q is not congruent to

7(mod 8), hence the theorem.
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Remark 2.2. the following is a partial list of prime numbers p ≡ 3(mod 4)

where q = 2p + 1 is also prime: p = 11, 23, 83, 131, 179, 239, 251.In each

instance,Mp is composite.

Exploring the matter a little further, the next tackle two results of Fermat

that restricted the divisors of Mp

Theorem 2.3. If p is an odd prime, then any prime divisors of Mp is of the

form 2kp + 1

proof

Let q be any prime divisors of Mp, so that 2p ≡ 1(mod q). If 2 has

order k modulo q. (ie if k is the smallest positive integer that satisfies

2k ≡ 1(mod q)),

then theorem ” Let the integer a have order k modulo n. Then ak ≡ 1(mod n)

if and only if k|n; in particular k|ϕ(n) ........(∗)
Tells us that k|p. The case k = 1 cannot arise; for this would imply that

q|1 (since if k = 1, 2k − 1 ≡ 0(mod q) =⇒ q = 1) an impossible situation.

Therefore , because both k|p and k > 1, the primality of p force k = p

In compliance with Fermat’s theorem, we have 2q−1 ≡ 1(mod q), and

again by theorem (∗) k|(q − 1) knowing that k = p , the net result is p|(q − 1).

To be defined , let us put q − 1 = pt; then q = pt + 1 . The proof is

completed by noting that if t were an odd integer, then q would be even and

a contradiction occurs. Hence , we must have q = 2kp + 1. For some choice

of k, which gives q the required form.

Theorem 2.4. If p is an odd prime , then any prime divisor q of mp is of

the form q ≡ ±1(mod 8).
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proof

Suppose that q = 2n+ 1 is a prime divisor of mp.

If a = 2(p+1)/2, then

a2 − 2 = (2(p+1)/2)2 − 2

= 2p+1 − 2

= 2p × 2− 2

= 2(2p − 1)

= 2Mp

≡ 0(mod q)

Raising both sides of the congruence a2 ≡ 2(mod q) to the nth power, we

get

aq−1 = a2n ≡ 2n(mod q)

Since q is an odd integer , one has gcd(a, q) = 1 and so aq−1 ≡ 1(mod q). In

conjunction, the last congruence tell us that

2n ≡ 1(mod q)

=⇒ 2n − 1 ≡ 0(mod q)

=⇒ q|Mn

the theorem (∗ ∗ ∗) now be brought into play to reach the condition that

q ≡ ±1(mod 8)

Therefore we get if p is an odd prime then any prime divisor q of Mp is of

the form

q ≡ ±1(mod 8)

hence the theorem.
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Remark 2.3. For an illustration of how these theorems can be used, one

might look at M17. These integers of the form 34k + 1 that are less than

362 <
√
M17 are 35, 69, 103, 137, 171, 205, 239, 273, 307, 341.

Because the smallest (non-trivial) divisors of M17 must be prime, we need

only consider the primes among the foregoing 10 numbers namely, 103, 137, 239, 307

the work can be shortened some what by noting that 307 is not congruent

to ±1(mod 8), and therefore we may delete 307 from our list.Now, either

M17 is prime or one of the three remaining possibilities divide it with a little

calculations we can check that M17 is divisible by none of 103, 137, and 239;

the result M17 is prime.

Theorem 2.5. EULER: If n is a perfect number, then any n = p1
k1p2

k2 .......pr
kr

where the p′is are distinct odd primes and p1 ≡ k1 ≡ 1(mod 4).

proof

Let n = n = p1
k1p2

k2 .......pr
kr be the prime factorisation of n. Because n

is perfect.We can write

2n = σ(n) = σ(p1
k1) ×σ(p2

k2) ....... ×σ(pr
kr)

being an odd integer, either n ≡ 1(mod 4) or n ≡ 3(mod 4)

being an odd integer, either n ≡ 1(mod 4) or n ≡ 3(mod 4); in any event,

2n ≡ 2(mod 4). Thus , σ(n) = 2n is divisible by 2, but not by 4. The

implication is that one of the σ(pi
ki), say σ(pi

ki), must be an even integer

(but not divisible by 4), and all the remaining σ(pi
ki)’s are odd integers.

For a given pi , there are two cases to be considered:

pi ≡ 1(mod 4) and pi ≡ 3(mod 4). If pi ≡ 3 ≡ −1(mod 4), we would have,
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σ(pi
ki) = 1 + pi + pi

2 + .......+ pi
ki

≡ 1 + (−1) + (−1)2 + ...........+ (−1)ki(mod 4)

≡

0(mod 4) if ki is odd

1(mod 4) if ki is even

since σ(pi
ki) ≡ 2(mod 4), this tells us that p1 ̸≡ 3(mod 4) or, to put it affir-

matively, p1 ≡ 1(mod 4). Furthermore, the congruence σ(pi
ki) ≡ 0(mod 4)

signifies that 4 divides σ(pi
ki) which is not possible.

The conclusion : if pi ≡ 3(mod 4) where i = 2, ........, r then it’s exponent ki

must be an even integer.

Should it happen that pi ≡ 1(mod 4) which is certainly true for i=1,then

σ(pi
ki) = 1 + pi + pi

2 + ..............+ pi
k

≡ 1 + 11 + 12 + ..........+ 1ki(mod 4)

≡ ki + 1(mod 4)

The condition σ(pi
ki) ≡ 2(mod 4) for as k1 ≡ 1(mod 4).For the other

values of i, we know that σ(pi
ki) ≡ 1 or 3(mod 4), and therefore ki ≡

0 or 2(mod 4); in any case ki is an even integer. The crucial point is that,

regardless of whether pi ≡ 1(mod 4) or pi ≡ 3(mod 4), ki is always for i ̸= 1.

Our proof is now complete.

Remark 2.4. In view of the preceding theorem, any odd perfect number n

can be expressed as

n = p1
k1p2

2j2 ............pr
2jr

= pk11 (p2
j2 ..........pjrr )

2

= p1
k1m2

This leads directly to the following corollary.
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corollary 2.5.1. If n is an odd perfect number, then n is of the form n =

pkm2. Where p is a prime, p does not divides m, and p ≡ k ≡ 1(mod 4); in

particular, n = 1(mod 4)

proof

Only the last assertion is not obvious.Because p ≡ 1(mod 4), we have

pk ≡ 1(mod 4).Notice that m must be odd; hence m ≡ 1 or 3(mod 4), and

therefore upon squaring, m2 ≡ 1(mod 4). It follows that

n = pkm2 ≡ 1× 1 ≡ 1(mod 4)

establishing our corollary.

definition 2.2. Two numbers such as 220 and 284 are called amicable, or

friendly; because they have the remarkable property that each number is ”

contained” within the other, in the sense that each number is equal to the

sum of all the positive divisors of the other , not counting the number it-

self.Thus, as regards the divisors 220

1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284

and for 284,

1 + 2 + 4 + 71 + 142 = 220

In terms of the σ function, amicable numbers m and n (or an amicable

pair) are defined by the equation.

σ(m)−m = n

σ(n)− n = m

or what amounts to the same thing;

σ(m) = m+ n = σ(n)
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Remark 2.5. Amicable number have been important in magic and astrol-

ogy, and casting horoscope, making talismans. The Greeks believed that these

numbers had a particular influence in establishing friendship between indi-

viduals.
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CHAPTER 3

FERMAT NUMBERS

3 Fermat Numbers:

definition 3.1. A Fermat number is an integer of the form

Fn = 22
n
+ 1, n ≥ 0

If Fn is prime, it is said to be a fermat prime.

Remark 3.1. F0 = 3, F1 = 5, F2 = 17 F3 = 257, F4 = 65537 and F5 =

22
5
+ 1 = 4294967297

Theorem 3.1. The fermat number F5 is divisible by 641

proof

We begin by putting a = 27 and b = 5, so that

1 + ab = 1 + (27 × 5) = 641

It is easily seen that

1 + ab− b4 = 1 + (a− b3)b = 1 + 3b = 24
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But this implies that;

F5 = 22
5
+ 1 = 232 + 1

= (24 × a4) + 1

= (1 + ab− b4)a4 + 1

(1 + ab)a4 + (1− a4b4)

= (1 + ab)[a4 + (1− ab)(1 + a2b2)]

which gives 641|Fn.

Theorem 3.2. For fermat numbers Fn and Fm, wherem > n ≥ 0, gcd(Fm, Fn) =

1.

proof

Put d = gcd(Fm, Fn) = 1. Because Fermat numbers are odd integers, d

must be odd. If we set x = 22
n
and k = 2m−n then

Fm−2
Fn

= (22
n
)2

m−n−1
22n+1

= xk−1
x+1

= xk−1 − xk−2 + .........− 1

hence Fn|(Fm − 2).From d|Fn, it follows that d|(Fm − 2).Now use the fact

that d|Fm to obtain d|2. But d is an odd integer, and so d = 1, establishing

the result is claimed.

Remark 3.2. We know that each of the Fermat numbers F0, F1, F2, ..........FN

is divisible by a prime that does not divide any of the other Fk. Thus, there
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are at least n+1 distinct primes not exceeding Fn.Because there are infinitely

many Fermat numbers, the number of primes is also infinite.

In 1877, the Jesuit priest T.Pepin devised the practical test(Pepin’s test for

determining the primality of Fn that is embodied in the following theorem.)

Theorem 3.3. Pepin’s test; For n ≥ 1, the Fermat number Fn = 22
n
+ 1 is

prime if and only if

3
Fn−1

2 ≡ −1(mod Fn)

proof

First let us assume that,

3
Fn−1

2 ≡ −1(mod Fn)

Upon squaring both sides we get

3Fn−1 ≡ 1(mod Fn)

The same congruence holds for any prime p that divides Fn

3Fn−1 ≡ 1(mod p)

Now let k be the order of 3 modulo p. We know that k|(Fn − 1) or in other

words, that k|22n therefore k must be a power of 2.

It is not possible that k = 2r for any r ≤ 2n − 1

For if this were so, repeated squaring of the congruence 3k ≡ 1(mod p) would

yield

32
2n−1 ≡ 1(mod p)
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or, what is the same thing,

3Fn−1 ≡ 1(mod p)

We would then arrive at 1 ≡ −1(mod p), resulting in p = 2, which is a

contradiction. Thus the only possibility open to us is that

k = 22
n
= Fn − 1

Fermat’s theorem tells us that k ≤ p − 1, which means, in turn, that

Fn = k+1 ≤ p. Because p|Fn, we also have p ≤ Fn.Together, these inequali-

ties mean that Fn = p, so that Fn is prime. On the other hand, suppose that

Fn, n ≥ 1 is prime.

The quadratic Reciprocity Law gives

(3|Fn) = (Fn|3) = (2|3) = −1

When we use the fact that

Fn ≡ (−1)2
n
+ 1 = 2(mod 3)

Applying Euler’s criterion, we end up with

3
Fn−1

2 ≡ −1(mod Fn)

Example 3.1. Show that using Pepin’s test F3 = 257 is prime.
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proof

3
p3−1

2 = 3128 = 33(35)
25

≡ 27(−14)25

≡ 27× 1424(−14)

≡ 27(17)(−14)

≡ 27× 19 ≡ 513 ≡ −1(mod 257)

So that F3 is prime.

Theorem 3.4. Any prime divisor p of the Fermat number Fn = 22
n
+ 1,

where n ≥ 2, is of the form

p = k × 2(n+2) + 1

proof

For a prime divisor p of Fn,

22
n ≡ −1(mod p)

Which is to say, upon squaring that

22
n+1 ≡ 1(mod p)

If h is the order of 2 modulo p, this congruence tells us that h|2n+1.We cannot

have h = 2r where 1 ≤ r ≤ n, for this would lead to 22
n ≡ 1(mod p) and in

turn, to the contradiction that p = 2.This let us conclude that h = 2n+1. Be-

cause the order of 2 modulo p divides ϕ(p) = p− 1, we may further conclude

that 2n+1|p− 1.The point is that for n ≥ 2, p ≡ 1(mod 8), and therefore, by

theorem, if p is an odd number then 2|p, the Legendre symbol (2|P ) = 1.
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Using Euler’s criterion, we immediately pass to

2
(p−1)

2 ≡ (2|p) = 1(mod p)

An appeal to theorem ” let the integer a have order k modulo n, then

ah ≡ 1(mod n) if and only if k|n, in particular, k|ϕ(n), ” finishes the proof.

It asserts that h| (p−1)
2

, or equivalently, 2(n+1)| (p−1)
2

.This forces 2n+2|(p− 1)

and we obtain p = k × 2(n+2) + 1 for some integer k.
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CONCLUSION
Number theory is the study of the integers and related objects.Topics studied

by number theorists include the problem of determining the distribution of

prime numbers within the integers and the structure and number of solutions

of polynomial equations with integer co-effecients.

A branch of pure mathematics that deals with the study of natural numbers

and the study deals with the set of positive whole numbers that are usually

called the set of natural numbers and is partly experimental and partly the-

oretical.

Number theory is necessary for the study of numbers because it shows

what numbers can do. It helps in providing valuable training in logical

thinking and studying the relationship between different kinds of numbers.

It is applied in cryptography, device authentication, websites for e-commerce,

coding, and security systems.
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INTRODUCTION
Number theory(or arithmetic or higher arithmetic in older us-

age) is a branch of pure mathematics devoted primarily to the study of the

integers and integer-valued functions.German mathematician Carl Friedrich

Gauss (1777-1855) said, ”Mathematics is the queen of the sciences - and

number theory is the queen of mathematics.

In accordance with the research methods and objectives, we briefly divide

number theory into four classes; Elementary number theory, Analytic num-

ber theory, Algebraic number theory and Geometric number theory. Here we

only deals with the Elementary number theory.

Elementary number theory is also known as classical number theory.It

is the basic theory for studying divisibility,congruences , diophantine equa-

tions etc, mainly by means of the four fundamental rules. It requires no long

preliminary training, the content is tangible and more than any other path

of mathematics, the methods of inquiry adhere to the scientific approach.

Applications of number theory:

Here are some of the most important applications of number theory. Number

theory is used to find some of the important divisibility tests, whether a given

integer m divides the integer n. Number theory have countless applications

in mathematics as well in practical applications such as :

1) Security system like in banking securities.

2) E-commerce websites.

3) Coding theory.

4) Bar codes.

5) Making of modular designs.

6) Memory management system.

7) Authentication system.
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It is also defined in hash functions, linear congruences, pseudo random num-

bers and fast arithmetic operations.
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PRELIMINARIES

DIVISOR:

A divisor is a number that divides another number either completely or with

a remainder.

GEOMETRIC PROGRESSION:

A geometric progression or a geometric sequence is the sequence , in which

each term is varied by another by a common ratio. The next term of the

sequence is produced when we multiply a constant(which is non-zero) to the

preceding term. It is represented by:

a, ar, ar2, ar3, ar4 and so on.

where a is the first term and r is the common ratio.

GCD:

The greatest common divisor of two or more numbers is the greatest common

factor number that divides them, exactly.

It is also called called the highest common factor (HCF).

Suppose 4, 8 and 16 are three numbers .Then the factors of 4, 8 and 16 are:

4− 1, 2, 4

8− 1, 2, 4, 8

16− 1, 2, 4, 8, 16
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Therefore we can conclude that 4 is the highest common factor among all

three numbers.

COMPOSITE:

In mathematics composite numbers are that have more than two factors.

example:

factors of 6 are 1,2,3 and 6, which are four factors in total

PRIME:

Prime numbers are the positive integers having only two factors, 1 and the

integer itself.

For example:

factors of 7 are only 1 and 7, totally two.

HYPOTHESIS:

Hypothesis is a proposition that is consistent with known data , but has been

neither verified nor shown to be false.

RELATIVELY PRIME:

Two integers a and b, not both of which are zero, are said to be relatively

prime whenever gcd(a, b) = 1.

example:

4− 1, 2, 4

and 15− 1, 3, 5

Here gcd(4, 15) = 1.
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Hence they are relatively prime.

CONGRUENT MODULO n:

Let n be a fixed positive integer. Two integers a and b are said to be congru-

ent modulo n, symbolized by a ≡ b(mod n) if n divides the difference a− b;

that is provided that a− b = kn for some integer k.

AMICABLE NUMBER:

Two numbers are amicable if each is equal to the sum of the proper divisors

of the other (for example, 220 and 284).

PRIMALITY:

Primality:the property of being a prime number.

EULER’S CRITERION

Euler’s criterion is a formula for determining whether an integer is a

quadratic residue modulo a prime. Precisely,

Let p be an odd prime and a be an integer coprime to p. Then

a(p−1)/2 ≡

1 (mod p) if there is an integer x such that a ≡ x2 (mod p),

−1 (mod p) if there is no such integer.

Euler’s criterion can be concisely reformulated using the Legendre sym-

bol: (a/p) = a(p−1)/2 (mod p)
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FERMAT’S THEOREM:

Let p be a prime and suppose that p doesn’t divide a. Then ap−1≡1(mod p).

PURE MATHEMATICS:

Pure mathematics is the study of mathematical concepts independently of

any application outside mathematics.
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CHAPTER 1

PERFECT NUMBERS

1 Perfect Numbers

The history of the theory of numbers abounds with famous conjectues and

open questions. this topic focuses on some of the intriguing congectures

associated with perfect numbers.

A few of these have been satisfactorily answered, but most remain unresolved.

Example 1.1. The pythagoreans considered it rather remarkable that the

number 6 is equal to the sum of its positive divisors,other than itself.

6=1+2+3

The next number after 6 having this feature is 28; for the positive divisors

of 28 are found to be 1,2,4,7,14 and 28.

28=1+2+4+7+14

And the pythagoreans called such numbers ’perfect’.

definition 1.1. A positive integer n is said to be perfect if n is equal to the

sum of all its positive divisors,excluding n itself.

The sum of the positive divisors of an integer n,each of them less than

n, is given by σ(n) − n = n. Thus, the condition ”n is perfect” amounts to

asking that σ(n)− n = n or equivalently that σ(n) = 2n
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EXAMPLE

σ(6) = 1 + 2 + 3 + 6 = 2 ∗ 6
σ(28) = 1 + 2 + 4 + 7 + 14 + 28 = 2 ∗ 28

it was partially solved by Euclid when he proved that if the sum

1 + 2 + 22 + 23 + ......+ 2k−1 = p

is a prime number, then 2k−1p is a perfect number(of necessity even). For

instance, 1+2+4=7 is a prime. Hence 4*7=28 is a perfect number. Euclid’s

arguments makes use of the formula for the sum of a geometric progression

1 + 2 + 22 + 23 + .......+ 2k−1 = 2k−1.

in this notation, the result reads as follows:

If 2k−1 is prime (k > 1), then n = 2k−1(2k − 1) is a perfect number.

Theorem 1.1. If 2k − 1 is prime (k > 1), then n = 2k−1(2k − 1) is perfect

and every even perfect number is of this form.

proof

Let 2k − 1 = p , a prime, and consider the integer n = 2k−1p. In as much as

gcd(2k−1, p) = 1, the multiplicativity of σ entails that

σ(n) = σ(2k−1p)

= σ(2k−1)σ(p)

= (2k−1)(p+ 1)
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(2k − 1)(2k) = 2n

making n a perfect number. Now conversely assume that n is an even perfect

number. we may write n as n = 2k−1m , where m is an odd integer and

k ≥ 2. It follows from gcd(2k−1,m) = 1 that

σ(n) = σ(2k−1m)

= σ(2k−1)σ(m)

= (2k−1)σ(m)

whereas the requirement for a number to be perfect gives

σ(n) = 2n = 2km

Together these relations yield

2km = (2k − 1)σ(m) .........(1)

=⇒ (2k−1)|2km. But 2k − 1and2k are relatively prime, whence (2k − 1)|m;

hence m = (2k − 1)M . Now, substituting this value of m into the equation

(1) and cancelling 2k − 1 is that σ(m) = 2kM . Because m and M are both

divisors of m (withM < m), we have

2kM = σ(m) ≥ m+M = 2kM

leading to σ(m) = m+M. The implication of this equality is that m has

only two positive divisors to it , M and m itself.

It must be that m is prime and M=1 ; in other words

m = (2k−1M)

= 2k − 1

Is a prime number, and hence the proof.
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Remark 1.1. Here our problem of finding even perfect number is reduced to

the search for primes of the form 2k− 1, a closer look at these integers might

be truthful.One thing that can be provided is that 2k−1 is a prime number, then

the exponent k must itself be prime. More generally we have the following

lemma.

Lemma 1.1. If ak − 1is prime (a > 0, k ≥ 2) then a=2 and k is also prime.

proof

ak − 1 = (a− 1)(ak−1 + ak−2 + ..........+ a+ 1)

where in the present setting,

ak−1 + ak−2 + ........+ a+ 1 ≥ a+ 1 > 1

because by the hypothesis ak−1 is prime, the other factor must be 1; that is,

a-1 = 1 so that a = 2.

If k were composite, then we could write k = rs with 1 < r and 1 < s. Thus

ak − 1 = (ar)s − 1

= (ar − 1)(ar(s−1) + ar(s−2) + ..........+ ar + 1)

and each factor on the right is plainly greater than 1. But this violates the

primality of ak − 1, so that by contradiction k must be prime.

Remark 1.2. For p = 2, 3, 5, 7 the values 3, 7, 31, 127 of 2p − 1 are primes.

so that

2(22 − 1) = 6

22(23 − 1) = 28

24(25 − 1) = 496

26(27 − 1) = 8128
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are all perfect numbers.Many early writers erroneously believed that 2p − 1

is prime for every choice of prime number p.

But we have,

211 − 1 = 2047 = (23)(89) , not prime.

But when p = 13, 2p − 1 is prime and 212(213 − 1) = 33550336 be the fifth

perfect number.

Therefore, we can say that 2p − 1 is prime and it is possible only when p is

prime.

Theorem 1.2. An even perfect number n ends in the digit 6 or 8 equivalently

either

n ≡ 6(mod 10) or n ≡ 8(mod 10)

proof

Being an even perfect number n may be represented as n = 2k−1(2k − 1),

where 2k − 1 is a prime. According to the last lemma, the exponent k must

also be prime. If k = 2, then n = 6, and the asserted result holds. We may

therefore confine our assumption to case k > 2.

The proof falls into two parts, according as k takes the form 4m+1 or 4m+3.

If k is of the form 4m+1 then

n = 24m(24m+1 − 1)

= 28k+1 − 24m

= (2 ∗ 162m)− 16m
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161 ≡ 6(mod 10) also

16t ≡ 6(mod 10) for any positive integer ’t’

Therefore we get, n = (2 ∗ 6)− 6 ≡ 6(mod 10)

Now in the case in which k= 4m+3

n = 24m+2(24m+3 − 1)

= 28m+5 − 24m+2

= (2 ∗ 162m+1)− (4 ∗ 16m)

Falling back on the fact that 16t ≡ 6(mod 10), we see that

n ≡ (2 ∗ 6)− (4 ∗ 6) ≡ −12 ≡ 8(mod 10)

ie, n ≡ 8(mod 10)

consequently, every even perfect number has a last digit equal to 6 or 8

Remark 1.3. An even perfect number n = 2k−1 ∗ (2k−1) always ends in the

digit 6 or 28. Because an integer is congruent modulo 100 to it’s last two dig-

its, it suffices to prove that, if k is of the form 4m+3, then n ≡ 28(mod 100).

To see this, note that

2k−1 = 24m+2

= (16m)(4)

≡ (6)(4)

≡ 4(mod 10)

Moreover, for k > 2 we have 4|2k−1, and therefore the number formed by

the last two digits of 2k−1 is divisible by 4, and 4 divides the last two digits

modulo 100, the various possibilities are

17



2k−1 ≡ 4, 24, 44, 64or84

But this implies that

2k − 1 = 2 ∗ 2k−1 ≡ 7, 47, 87, 27 or 67(mod 100)

hence

n = 2k−1(2k − 1)

≡ 4 ∗ 7, 24 ∗ 47, 44 ∗ 87, 64 ∗ 24 or 84 ∗ 67(mod 100)
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CHAPTER 2

MERSENNE PRIME

2 Mersenne Prime

It has became traditional to call numbers of the form Mn = 2n − 1, n ≥ 1

Mersenne numbers after father Marin Mersenne who made an incorrect but

provocative assertion concerning their primality.

definition 2.1. Mersenne numbers that happens to be prime are said to be

Mersenne primes.

Remark 2.1. Mp is prime for p = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257 and

composite for all other primes p < 257

Theorem 2.1. If p and q = 2p+1 are primes, then their q|Mp or q|Mp +2.

proof

With reference to Fermat’s theorem, we know that

2q−1 − 1 ≡ 0(modq)

and factorising the left hand side,that

(2(q−1)/2 − 1)(2(q−1)/2 + 1) = (2p − 1)(2p + 1) ≡ 0(mod q)
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ie, (2p − 1)(2p + 1) ≡ 0(mod q)

=⇒ (2p − 1)(2p − 1 + 2) ≡ 0(mod q)

=⇒ Mp(Mp + 2) ≡ 0(mod q)

By using the theorem, ”if p is a prime and p|ab, then p|a or p|b ”, we cannot
have both q|Mp and q|Mp + 2, for then q|2 , which is impossible therefore

either q|Mp or q|Mp + 2.

Example 2.1. A simple application should suffice to illustrate the above the-

orem if p = 23, then q = 2p+1 = 47 is also a prime, so that we may consider

the case of M23

The questions reduces to one of whether 47|M23 or to put it differently,

whether 223 ≡ 1(mod 47)

now we have

223 ≡ 23(25)
4 ≡ 23(−15)4(mod 47)

(−15)4 ≡ (225)2 ≡ (−10)2 ≡ 6(mod 47)

putting these two congruences together, it is seen that

223 ≡ 23 ∗ 6 ≡ 48 ≡ 1(mod 47)

hence M23 is composite.

Theorem 2.2. If q = 2n+ 1 is prime, then

a) q|Mn , provided that q ≡ 1(mod 8) or q ≡ 7(mod 8)

b) q|Mn + 2, provided that q ≡ 3(mod 8) or q ≡ 5(mod 8)
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proof

To say that q|Mn is equivalent to asserting that

2(q−1)/2 = 2n ≡ 1(mod q) .........(∗ ∗ ∗)
2n − 1 ≡ 0(mod q)

In terms of the legendre symbol, the condition (1) becomes the requirement

that (2/q) = 1 but according to the theorem, if p is an odd prime then,

(2/q) =

1, if p ≡ 1(mod 8) or p ≡ 7(mod 8)

(−1), if p ≡ 3(mod 8) or p ≡ 5(mod 8)

we get (2/q) = 1 when we have q ≡ 1(mod 8) or q ≡ 7(mod 8)

the proof of (b) proceeds along similar lines.

we get (q|mn + 2) provided that q ≡ 3(mod 8) or q ≡ 5(mod 8)

corollary 2.2.1. If p and q = 2p+1 are both odd primes, with p = 3(mod 4),

then q|Mp

proof

An odd prime p is either of the form 4k+1 or 4k+2. If p = 4k+3 , then

q = 2(4k + 3) + 1

= 8k + 7

and the above theorem yield q|Mp. since by the condition q|Mn provided

that q ≡ 1(mod 8) . In the case in which p = 4k+1, q = 8k+3 so that q does

not divide Mp, since q is not congruent to 1(mod 8) or q is not congruent to

7(mod 8), hence the theorem.
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Remark 2.2. the following is a partial list of prime numbers p ≡ 3(mod 4)

where q = 2p + 1 is also prime: p = 11, 23, 83, 131, 179, 239, 251.In each

instance,Mp is composite.

Exploring the matter a little further, the next tackle two results of Fermat

that restricted the divisors of Mp

Theorem 2.3. If p is an odd prime, then any prime divisors of Mp is of the

form 2kp + 1

proof

Let q be any prime divisors of Mp, so that 2p ≡ 1(mod q). If 2 has

order k modulo q. (ie if k is the smallest positive integer that satisfies

2k ≡ 1(mod q)),

then theorem ” Let the integer a have order k modulo n. Then ak ≡ 1(mod n)

if and only if k|n; in particular k|ϕ(n) ........(∗)
Tells us that k|p. The case k = 1 cannot arise; for this would imply that

q|1 (since if k = 1, 2k − 1 ≡ 0(mod q) =⇒ q = 1) an impossible situation.

Therefore , because both k|p and k > 1, the primality of p force k = p

In compliance with Fermat’s theorem, we have 2q−1 ≡ 1(mod q), and

again by theorem (∗) k|(q − 1) knowing that k = p , the net result is p|(q − 1).

To be defined , let us put q − 1 = pt; then q = pt + 1 . The proof is

completed by noting that if t were an odd integer, then q would be even and

a contradiction occurs. Hence , we must have q = 2kp + 1. For some choice

of k, which gives q the required form.

Theorem 2.4. If p is an odd prime , then any prime divisor q of mp is of

the form q ≡ ±1(mod 8).
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proof

Suppose that q = 2n+ 1 is a prime divisor of mp.

If a = 2(p+1)/2, then

a2 − 2 = (2(p+1)/2)2 − 2

= 2p+1 − 2

= 2p × 2− 2

= 2(2p − 1)

= 2Mp

≡ 0(mod q)

Raising both sides of the congruence a2 ≡ 2(mod q) to the nth power, we

get

aq−1 = a2n ≡ 2n(mod q)

Since q is an odd integer , one has gcd(a, q) = 1 and so aq−1 ≡ 1(mod q). In

conjunction, the last congruence tell us that

2n ≡ 1(mod q)

=⇒ 2n − 1 ≡ 0(mod q)

=⇒ q|Mn

the theorem (∗ ∗ ∗) now be brought into play to reach the condition that

q ≡ ±1(mod 8)

Therefore we get if p is an odd prime then any prime divisor q of Mp is of

the form

q ≡ ±1(mod 8)

hence the theorem.
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Remark 2.3. For an illustration of how these theorems can be used, one

might look at M17. These integers of the form 34k + 1 that are less than

362 <
√
M17 are 35, 69, 103, 137, 171, 205, 239, 273, 307, 341.

Because the smallest (non-trivial) divisors of M17 must be prime, we need

only consider the primes among the foregoing 10 numbers namely, 103, 137, 239, 307

the work can be shortened some what by noting that 307 is not congruent

to ±1(mod 8), and therefore we may delete 307 from our list.Now, either

M17 is prime or one of the three remaining possibilities divide it with a little

calculations we can check that M17 is divisible by none of 103, 137, and 239;

the result M17 is prime.

Theorem 2.5. EULER: If n is a perfect number, then any n = p1
k1p2

k2 .......pr
kr

where the p′is are distinct odd primes and p1 ≡ k1 ≡ 1(mod 4).

proof

Let n = n = p1
k1p2

k2 .......pr
kr be the prime factorisation of n. Because n

is perfect.We can write

2n = σ(n) = σ(p1
k1) ×σ(p2

k2) ....... ×σ(pr
kr)

being an odd integer, either n ≡ 1(mod 4) or n ≡ 3(mod 4)

being an odd integer, either n ≡ 1(mod 4) or n ≡ 3(mod 4); in any event,

2n ≡ 2(mod 4). Thus , σ(n) = 2n is divisible by 2, but not by 4. The

implication is that one of the σ(pi
ki), say σ(pi

ki), must be an even integer

(but not divisible by 4), and all the remaining σ(pi
ki)’s are odd integers.

For a given pi , there are two cases to be considered:

pi ≡ 1(mod 4) and pi ≡ 3(mod 4). If pi ≡ 3 ≡ −1(mod 4), we would have,
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σ(pi
ki) = 1 + pi + pi

2 + .......+ pi
ki

≡ 1 + (−1) + (−1)2 + ...........+ (−1)ki(mod 4)

≡

0(mod 4) if ki is odd

1(mod 4) if ki is even

since σ(pi
ki) ≡ 2(mod 4), this tells us that p1 ̸≡ 3(mod 4) or, to put it affir-

matively, p1 ≡ 1(mod 4). Furthermore, the congruence σ(pi
ki) ≡ 0(mod 4)

signifies that 4 divides σ(pi
ki) which is not possible.

The conclusion : if pi ≡ 3(mod 4) where i = 2, ........, r then it’s exponent ki

must be an even integer.

Should it happen that pi ≡ 1(mod 4) which is certainly true for i=1,then

σ(pi
ki) = 1 + pi + pi

2 + ..............+ pi
k

≡ 1 + 11 + 12 + ..........+ 1ki(mod 4)

≡ ki + 1(mod 4)

The condition σ(pi
ki) ≡ 2(mod 4) for as k1 ≡ 1(mod 4).For the other

values of i, we know that σ(pi
ki) ≡ 1 or 3(mod 4), and therefore ki ≡

0 or 2(mod 4); in any case ki is an even integer. The crucial point is that,

regardless of whether pi ≡ 1(mod 4) or pi ≡ 3(mod 4), ki is always for i ̸= 1.

Our proof is now complete.

Remark 2.4. In view of the preceding theorem, any odd perfect number n

can be expressed as

n = p1
k1p2

2j2 ............pr
2jr

= pk11 (p2
j2 ..........pjrr )

2

= p1
k1m2

This leads directly to the following corollary.
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corollary 2.5.1. If n is an odd perfect number, then n is of the form n =

pkm2. Where p is a prime, p does not divides m, and p ≡ k ≡ 1(mod 4); in

particular, n = 1(mod 4)

proof

Only the last assertion is not obvious.Because p ≡ 1(mod 4), we have

pk ≡ 1(mod 4).Notice that m must be odd; hence m ≡ 1 or 3(mod 4), and

therefore upon squaring, m2 ≡ 1(mod 4). It follows that

n = pkm2 ≡ 1× 1 ≡ 1(mod 4)

establishing our corollary.

definition 2.2. Two numbers such as 220 and 284 are called amicable, or

friendly; because they have the remarkable property that each number is ”

contained” within the other, in the sense that each number is equal to the

sum of all the positive divisors of the other , not counting the number it-

self.Thus, as regards the divisors 220

1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284

and for 284,

1 + 2 + 4 + 71 + 142 = 220

In terms of the σ function, amicable numbers m and n (or an amicable

pair) are defined by the equation.

σ(m)−m = n

σ(n)− n = m

or what amounts to the same thing;

σ(m) = m+ n = σ(n)
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Remark 2.5. Amicable number have been important in magic and astrol-

ogy, and casting horoscope, making talismans. The Greeks believed that these

numbers had a particular influence in establishing friendship between indi-

viduals.
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CHAPTER 3

FERMAT NUMBERS

3 Fermat Numbers:

definition 3.1. A Fermat number is an integer of the form

Fn = 22
n
+ 1, n ≥ 0

If Fn is prime, it is said to be a fermat prime.

Remark 3.1. F0 = 3, F1 = 5, F2 = 17 F3 = 257, F4 = 65537 and F5 =

22
5
+ 1 = 4294967297

Theorem 3.1. The fermat number F5 is divisible by 641

proof

We begin by putting a = 27 and b = 5, so that

1 + ab = 1 + (27 × 5) = 641

It is easily seen that

1 + ab− b4 = 1 + (a− b3)b = 1 + 3b = 24
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But this implies that;

F5 = 22
5
+ 1 = 232 + 1

= (24 × a4) + 1

= (1 + ab− b4)a4 + 1

(1 + ab)a4 + (1− a4b4)

= (1 + ab)[a4 + (1− ab)(1 + a2b2)]

which gives 641|Fn.

Theorem 3.2. For fermat numbers Fn and Fm, wherem > n ≥ 0, gcd(Fm, Fn) =

1.

proof

Put d = gcd(Fm, Fn) = 1. Because Fermat numbers are odd integers, d

must be odd. If we set x = 22
n
and k = 2m−n then

Fm−2
Fn

= (22
n
)2

m−n−1
22n+1

= xk−1
x+1

= xk−1 − xk−2 + .........− 1

hence Fn|(Fm − 2).From d|Fn, it follows that d|(Fm − 2).Now use the fact

that d|Fm to obtain d|2. But d is an odd integer, and so d = 1, establishing

the result is claimed.

Remark 3.2. We know that each of the Fermat numbers F0, F1, F2, ..........FN

is divisible by a prime that does not divide any of the other Fk. Thus, there
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are at least n+1 distinct primes not exceeding Fn.Because there are infinitely

many Fermat numbers, the number of primes is also infinite.

In 1877, the Jesuit priest T.Pepin devised the practical test(Pepin’s test for

determining the primality of Fn that is embodied in the following theorem.)

Theorem 3.3. Pepin’s test; For n ≥ 1, the Fermat number Fn = 22
n
+ 1 is

prime if and only if

3
Fn−1

2 ≡ −1(mod Fn)

proof

First let us assume that,

3
Fn−1

2 ≡ −1(mod Fn)

Upon squaring both sides we get

3Fn−1 ≡ 1(mod Fn)

The same congruence holds for any prime p that divides Fn

3Fn−1 ≡ 1(mod p)

Now let k be the order of 3 modulo p. We know that k|(Fn − 1) or in other

words, that k|22n therefore k must be a power of 2.

It is not possible that k = 2r for any r ≤ 2n − 1

For if this were so, repeated squaring of the congruence 3k ≡ 1(mod p) would

yield

32
2n−1 ≡ 1(mod p)
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or, what is the same thing,

3Fn−1 ≡ 1(mod p)

We would then arrive at 1 ≡ −1(mod p), resulting in p = 2, which is a

contradiction. Thus the only possibility open to us is that

k = 22
n
= Fn − 1

Fermat’s theorem tells us that k ≤ p − 1, which means, in turn, that

Fn = k+1 ≤ p. Because p|Fn, we also have p ≤ Fn.Together, these inequali-

ties mean that Fn = p, so that Fn is prime. On the other hand, suppose that

Fn, n ≥ 1 is prime.

The quadratic Reciprocity Law gives

(3|Fn) = (Fn|3) = (2|3) = −1

When we use the fact that

Fn ≡ (−1)2
n
+ 1 = 2(mod 3)

Applying Euler’s criterion, we end up with

3
Fn−1

2 ≡ −1(mod Fn)

Example 3.1. Show that using Pepin’s test F3 = 257 is prime.
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proof

3
p3−1

2 = 3128 = 33(35)
25

≡ 27(−14)25

≡ 27× 1424(−14)

≡ 27(17)(−14)

≡ 27× 19 ≡ 513 ≡ −1(mod 257)

So that F3 is prime.

Theorem 3.4. Any prime divisor p of the Fermat number Fn = 22
n
+ 1,

where n ≥ 2, is of the form

p = k × 2(n+2) + 1

proof

For a prime divisor p of Fn,

22
n ≡ −1(mod p)

Which is to say, upon squaring that

22
n+1 ≡ 1(mod p)

If h is the order of 2 modulo p, this congruence tells us that h|2n+1.We cannot

have h = 2r where 1 ≤ r ≤ n, for this would lead to 22
n ≡ 1(mod p) and in

turn, to the contradiction that p = 2.This let us conclude that h = 2n+1. Be-

cause the order of 2 modulo p divides ϕ(p) = p− 1, we may further conclude

that 2n+1|p− 1.The point is that for n ≥ 2, p ≡ 1(mod 8), and therefore, by

theorem, if p is an odd number then 2|p, the Legendre symbol (2|P ) = 1.
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Using Euler’s criterion, we immediately pass to

2
(p−1)

2 ≡ (2|p) = 1(mod p)

An appeal to theorem ” let the integer a have order k modulo n, then

ah ≡ 1(mod n) if and only if k|n, in particular, k|ϕ(n), ” finishes the proof.

It asserts that h| (p−1)
2

, or equivalently, 2(n+1)| (p−1)
2

.This forces 2n+2|(p− 1)

and we obtain p = k × 2(n+2) + 1 for some integer k.
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CONCLUSION
Number theory is the study of the integers and related objects.Topics studied

by number theorists include the problem of determining the distribution of

prime numbers within the integers and the structure and number of solutions

of polynomial equations with integer co-effecients.

A branch of pure mathematics that deals with the study of natural numbers

and the study deals with the set of positive whole numbers that are usually

called the set of natural numbers and is partly experimental and partly the-

oretical.

Number theory is necessary for the study of numbers because it shows

what numbers can do. It helps in providing valuable training in logical

thinking and studying the relationship between different kinds of numbers.

It is applied in cryptography, device authentication, websites for e-commerce,

coding, and security systems.
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INTRODUCTION

In mathematics, graph theory is the study of graphs, which are mathematical struc-
tures used to model pairwise relations between objects. Graph theory is a delight-
ful playground for the exploration of proof techniques in Discrete Mathematics.
The results of graph theory have applications in many areas of the computing,
social and natural sciences. One of the beauties of graph theory is that it depends
very little on other branches of mathematics. The subject of graph theory had its
beginnings in recreational math problems but it has grown into a significant area
of mathematical research, with applications in chemistry, operations research, so-
cial sciences, and computer science.

Graph Theory can model and study many real-world problems and is applied in a
wide range of disciplines. In computer science, graph theory is used to model net-
works and communications as seen in the case of Google search, Google Maps and
social media. Furthermore, graph theory is used in chemistry to model molecules
and in biology to study genomes. It is even used in linguistics and social sciences.
Using graph theory in Machine Learning and neural network is also one of the
new trends.

The history of graph theory may be specifically traced to 1735, when the Swiss
mathematician Leonhard Euler solved the Königsberg bridge problem. The Königs-
berg bridge problem was an old puzzle concerning the possibility of finding a
path over every one of seven bridges that span a forked river flowing past an is-
land—but without crossing any bridge twice. Euler argued that no such path exists
since in Königsberg, the four land masses were connected by an odd number of
bridges, it was impossible to draw the desired route. His proof involved only ref-
erences to the physical arrangement of the bridges, but essentially he proved the
first theorem in graph theory.
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CHAPTER 1

BASIC CONCEPTS IN GRAPH
THEORY

1.1 GRAPH
A graph G = (V(G),E(G)) consists of two finite sets:

i The vertex set of the graph, denoted by V(G) or V, which is a non-empty set
of elements called vertices,

ii The edge set of the graph, denoted by E(G) or E, which is a possible empty
set of elements called edges,

such that each edge e in E is assigned an unordered pair of vertices (u,v) called
the end vertices of e.

Vertices of a graph are also known as nodes or points while edges are also called
links or lines.

1.1.1 EXAMPLE
Let G = (V,E) where V = {a, b, c, d, e}, E = {e1, e2, e3, e4, e5, e6, e7, e8}, and the
ends of edges are given by:

e1 ←→ (a, b) e2 ←→ (b, c) e3 ←→ (c, c) e4 ←→ (c, d) e5 ←→ (b, d)
e6 ←→ (d, e) e7 ←→ (b, e) e8 ←→ (b, e).
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CHAPTER 1. BASIC CONCEPTS IN GRAPH THEORY

Then, G can be represented diagrammatically as:

1.2 SUBGRAPHS
Let H be a graph with vertex set V (H) and edge set E(H) and similarly, let G
be a graph with vertex set V (G) and edge set E(G). Then we say that H is a
subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). In such a case, we also say
that G is a supergraph of H .

In the above example, G1 is a subgraph of both G2 and G3. But, G3 is not a
subgraph of G2.

1.2.1 PROPER SUBGRAPH
If H is a subgraph of G then we write: H ⊆ G. When H ⊆ G but H ̸= G, i.e.,
V (H) ̸= V (G) or E(H) ̸= E(G), then H is called a proper subgraph of G.
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CHAPTER 1. BASIC CONCEPTS IN GRAPH THEORY

1.2.2 EXAMPLE

1.2.3 SPANNING SUBGRAPH
A spanning subgraph of a graph G is a subgraph H with V (H) = V (G), i.e., H
and G have exactly the same vertex set.

1.2.4 EXAMPLE

4



CHAPTER 1. BASIC CONCEPTS IN GRAPH THEORY

1.3 SOME DEFINITIONS
Definition 1.1. LOOP

An edge for which two end vertices are the same is called a loop.

Definition 1.2. PARALLEL EDGES

If two or more edges of G have the same end vertices, these edges
are called multiple or parallel edges.

Definition 1.3. INCIDENT EDGE

Any edge is said to be incident to the vertices connected by the
edge.

Definition 1.4. ADJACENT VERTEX

A vertex is said to be adjacent to other vertices if it has an edge
connecting it to the vertices.

Definition 1.5. ISOLATED VERTEX

Any vertex without any edges coming in or out of it is called an
isolated vertex.

Definition 1.6. VERTEX DEGREES

Let v be a vertex of a graph G. The degree d(v) of v is the number
of edges of G incident with v, counting each loop twice, i.e., it is the
number of times v is an end vertex of an edge.

Definition 1.7. BIPARTITION

Let G be a graph. If the vertex set V of G can be partitioned into
two non-empty subsets X and Y in such a way that each edge of G
has one end in X and one end in Y , then G is called bipartite.
The partition V is called a bipartition of G.
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CHAPTER 1. BASIC CONCEPTS IN GRAPH THEORY

1.4 PATHS, CYCLES AND TREES

1.4.1 WALK
A walk in a graph G is a finite sequence:

W = v0e1v1e2v2...vk−1ekvk (1.1)

whose terms are alternatively vertices and edges such that, for 1 ≤ i ≤ k, the
edge ei has ends vi−1 and vi. Thus, each edge ei is immediately preceded and
succeeded by the two vertices with which it is incident.

The walk W in (2.1) is a v0 − vk walk, or, a walk from v0 to vk. The vertex
v0 is called the origin of the walk while vk is called the terminus of W . (v0 and
vk need not be distinct.)
The vertices v1, v2,...,vk−1, in a walk W are called its internal vertices. The inte-
ger k, the number of edges in the walk, is called the length of W .

1.4.2 TRIVIAL WALK
A trivial walk is a walk containing no edges.
Thus, for any vertex v of a graph G,

W = v

gives a trivial walk. It has length 0.

1.4.3 CLOSED AND OPEN WALK
For two given vertices u and v of a graph G, a u − v walk is said to be closed or
open depending on whether u = v or u ̸= v.

1.4.4 TRAIL
If the edges e1, e2, ..., ek of the walk W = v0 e1 v1 e2 v2...ekvk are distinct, W is
called a trail.

6



CHAPTER 1. BASIC CONCEPTS IN GRAPH THEORY

1.4.5 PATH
If the vertices v0, v1, ..., vk of the walk W = v0 e1 v1 e2 v2...ek vk are distinct then
W is called a path.
A path with n vertices is sometimes denoted by Pn and it has length n− 1.

1.4.6 EXAMPLE

Let the above graph G be such that the walks W1, W2, W3, W4 be defined as:

• W1 = v1 e1 v2 e5 v3 e10 v3 e5 v2 e3 v5

• W2 = v1 e1 v2 e1 v1 e1 v2

• W3 = v1 v5 v2 v4 v3 v1

• W4 = v2 v4 v3 v5 v1

Here, the length of:

1. W1 = 5

2. W2 = 3

3. W3 = 5

4. W4 = 4.

7



CHAPTER 1. BASIC CONCEPTS IN GRAPH THEORY

Then,

1. W1, W2 and W4 are open walks while W3 is a closed walk.

2. W3, W4 are trails but W1 and W2 aren’t.

3. W4 is a path but W1, W2 and W3 aren’t.

Theorem 1.4.1. Given any two vertices u and v of a graph G, every
u− v walk contains a u− v path,
i.e., given any walk,

W = u e1 v1...vk−1 ek v

then, after some deletion of vertices and edges if necessary, we can
find a sub-sequence P of W which is a u− v path.

Proof. If u = v, i.e.,if W is closed, then the trivial path P = u will do.

Now suppose u ̸= v,i.e.,W is open and let the vertices of W be given, in order,
by:

u = u0, u1, u2, ..., uk−1, uk = v.

If none of the vertices of G occurs in W more than once, then W is already a u−v
path and so we are finished by taking P = W .

So now suppose that there are vertices of G that occur in W twice or more.
Then there are distinct i, j with i < j, say, such that ui = uj . If the terms
ui, ui+1, ..., uj−1 (and the preceding edges) are deleted from W then we obtain a
u− v walk W1 having fewer vertices than W . If there is no repetition of vertices
in W1, then W1 is a u− v path and setting P = W1 finishes the proof.
If this is not the case, then we repeat the above deletion procedure until finally
arriving at a u− v walk that is a path, as required. □

8



CHAPTER 1. BASIC CONCEPTS IN GRAPH THEORY

1.4.7 CYCLE
A non-trivial closed trail in a graph G is called a cycle if its origin and internal
vertices are distinct i.e.,
A cycle in a graph is a non-empty trail in which only the first and last vertices are
equal.

A cycle of length k is called a k − cycle. A k − cycle is called odd or even
depending on whether k is odd or even.

A 3−cycle is often called a triangle. An n−cycle, i.e., a cycle with n vertices,
will sometimes be denoted by Cn.

EXAMPLE 1:

In the above example,

1. C = v1 v2 v3 v4 v1 is a 4-cycle.

2. T = v1 v2 v5 v3 v4 v5 v1 in a non-trivial closed trail which is not a cycle since
v5 occurs twice as an internal vertex.

3. C1 = v1 v2 v5 v1 is a triangle.

EXAMPLE 2:

Here, 0 → 1 → 2 → 3 → 0 is a 4-cycle but 0 → 1 → 2 → 4 → 2 → 3 → 0 is
not a cycle since the vertex 2, an internal vertex, occurs twice.

9



CHAPTER 1. BASIC CONCEPTS IN GRAPH THEORY

1.4.8 TREES
A graph G is called acyclic if it contains no cycles.
A graph G is called a tree if it is a connected acyclic graph, i.e., A tree is an undi-
rected graph in which any two vertices are connected by exactly one path.

EXAMPLE 1:

The above graph is an undirected connected acyclic graph and thus, a tree.

EXAMPLE 2:

The above example shows the representation of the first four hydrocarbons as
trees.

10



CHAPTER 2

TYPES AND PROPERTIES OF
GRAPHS

2.1 TYPES OF GRAPHS
Definition 2.1. NULL GRAPH

A null graph is a graph in which there are no edges between its
vertices. A null graph is also called empty graph.

EXAMPLE:

In all the above graphs, there are no edges between the vertices.

Definition 2.2. TRIVIAL GRAPH

A trivial graph is the graph which has only one vertex.

11



CHAPTER 2. TYPES AND PROPERTIES OF GRAPHS

EXAMPLE:

In the above graph, there is only one vertex ’v’ without any edge.
Therefore, it is a trivial graph.

Definition 2.3. SIMPLE GRAPH

A simple graph is the undirected graph with no parallel edges and
no loops. A simple graph which has n vertices, the degree of every
vertex is at most n− 1.

EXAMPLE:

Definition 2.4. UNDIRECTED GRAPH

An undirected graph is a graph whose edges are not directed. The
relations between pairs of vertices in an undirected graph are sym-
metric, so that each edge has no directional character. They only
represent whether or not a relationship exists between two vertices.
Thus, all the edges in an undirected graph are bidirectional.

12



CHAPTER 2. TYPES AND PROPERTIES OF GRAPHS

EXAMPLE:

Definition 2.5. DIRECTED GRAPH

A directed graph is a graph in which the edges are directed by ar-
rows.
Directed graphs are also known as digraphs.

EXAMPLE:

In the above graph, each edge is directed by the arrow. A directed
edge has an arrow from A to B means A is related to B but B is not
related to A.

13



CHAPTER 2. TYPES AND PROPERTIES OF GRAPHS

Definition 2.6. COMPLETE GRAPH

A graph in which every pair of vertices is joined by exactly one
edge is called complete graph. It contains all possible edges.
A complete graph with n vertices contains exactly

(
n
2

)
edges.

EXAMPLE:

In the above example, since each vertex in the graph is connected with
all the remaining vertices through exactly one edge, both are complete
graphs.

Definition 2.7. CONNECTED GRAPH

A connected graph is a graph in which we can visit from any one
vertex to any other vertex. In a connected graph, at least one edge or
path exists between every pair of vertices.

EXAMPLE:

In the above example, we can traverse from any one vertex to any
other vertex. It means there exists at least one path between every
pair of vertices therefore, it a connected graph.

14



CHAPTER 2. TYPES AND PROPERTIES OF GRAPHS

Definition 2.8. DISCONNECTED GRAPH

A disconnected graph is a graph in which any path does not exist
between every pair of vertices.

EXAMPLE:

The above graph consists of two independent components which are
disconnected. Since it is not possible to visit from the vertices of one
component to the vertices of other components, it is a disconnected
graph.

Definition 2.9. REGULAR GRAPH

A regular graph is a graph in which degree of all the vertices is
same.
If the degree of all the vertices is k, then it is called k − regulargraph.

EXAMPLE:

In the above example, all the vertices have degree 2. Therefore they
are called 2−Regulargraph.
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CHAPTER 2. TYPES AND PROPERTIES OF GRAPHS

Definition 2.10. CYCLIC GRAPH

A graph with n vertices (where n >= 3) and n edges forming a cycle
of n with all its edges is known as cycle graph.
In the cycle graph, degree of each vertex is 2.

A graph containing at least one cycle in it is known as a cyclic
graph.

EXAMPLE:

In the above example, all the vertices have degree 2. Therefore they
all are cyclic graphs.

The above graph contains two cycles in it and therefore it is a cyclic
graph.

Definition 2.11. ACYCLIC GRAPH

A graph which does not contain any cycle in it is called as an
acyclic graph.
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CHAPTER 2. TYPES AND PROPERTIES OF GRAPHS

EXAMPLE:

Definition 2.12. BIPARTITE GRAPH

A bipartite graph is a graph in which the vertex set can be parti-
tioned into two sets such that edges only go between sets, not within
them.
A graph G(V,E) is called bipartite graph if its vertex-set V (G) can be
decomposed into two non-empty disjoint subsets V1(G) and V2(G) in
such a way that each edge e ∈ E(G) has its one last joint in V1(G) and
other last point in V2(G).
The partition V = V 1 ∪ V 2 is known as bipartition of G.

EXAMPLE 1:

17
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EXAMPLE 2:

Definition 2.13. COMPLETE BIPARTITE GRAPH

A complete bipartite graph is a bipartite graph in which each ver-
tex in the first set is joined to each vertex in the second set by exactly
one edge.
A complete bipartite graph is a bipartite graph which is complete.

CompleteBipartiteGraph = BipartiteGraph+ CompleteGraph (2.1)

EXAMPLE:

The above graph is known as K4,3
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CHAPTER 2. TYPES AND PROPERTIES OF GRAPHS

Definition 2.14. STAR GRAPH

A star graph is a complete bipartite graph in which n − 1 vertices
have degree 1 and a single vertex has degree (n − 1). This exactly
looks like a star where (n− 1) vertices are connected to a single cen-
tral vertex.
A star graph with n vertices is denoted by Sn.

EXAMPLE:

In the above example, out of n vertices, all the (n − 1) vertices are
connected to a single vertex. Hence, it is a star graph.

Definition 2.15. WEIGHTED GRAPH

A weighted graph is a graph whose edges have been labeled with
some weights or numbers.
The length of a path in a weighted graph is the sum of the weights of
all the edges in the path.

EXAMPLE:
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In the above graph, if the path chosen is a→ b→ c→ d→ e→ g then
the length of the path is :

5 + 4 + 5 + 6 + 5 = 25.

Definition 2.16. MULTI GRAPH

A graph in which there are multiple edges between any pair of ver-
tices or there are edges from a vertex to itself (loop) is called a multi -
graph.

EXAMPLE:

In the above graph, vertex-set B and C are connected with two edges.
Similarly, vertex sets E and F are connected with 3 edges. Therefore,
it is a multi graph.

Definition 2.17. PLANAR GRAPH

A planar graph is a graph that we can draw in a plane in such
a way that no two edges of it cross each other except at a vertex to
which they are incident,
i.e., A planar graph is a graph that can be embedded in the plane
such that its edges intersect only at their endpoints.
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EXAMPLE:

The above graph may not seem to be planar because it has edges
crossing each other. But we can redraw the above graph.

The three plane drawings of the above graph are:

The above three graphs do not consist of two edges crossing each
other and therefore, all the above graphs are planar.

2.2 PROPERTIES OF GRAPHS

2.2.1 DISTANCE BETWEEN TWO VERTICES
Distance is basically the number of edges in a shortest path between vertex X and
vertex Y . If there are many paths connecting two vertices, then the shortest path
is considered as the distance between the two vertices.
Distance between any two vertices X and Y is denoted by d(X, Y ).
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EXAMPLE:

Suppose, we want to find the distance between vertex B and D. Then, first of all,
we have to find the shortest path between vertex B and D.
There are many paths from vertex B to vertex D:

• B→ C→ A→ D. Here, length = 3

• B→ D. Length = 1 (Shortest Path)

• B→ A→ D. Length = 2

• B→ C→ D. Length = 2

• B→ C→ A→ D. Length = 3

Hence, the minimum distance between vertex B and vertex D is 1.

2.2.2 ECCENTRICITY OF A VERTEX
Eccentricity of a vertex is the maximum distance between a vertex to all other
vertices. It is denoted by e(V ).
For a disconnected graph, all vertices are defined to have infinite eccentricity.
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2.2.3 RADIUS OF CONNECTED GRAPHS
The radius of a connected graph is the minimum eccentricity from all the vertices.
In other words, the minimum among all the distances between a vertex to all other
vertices is called as the radius of the graph.
It is denoted by r(G).

2.2.4 DIAMETER OF A GRAPH
Diameter of a graph is the maximum eccentricity from all the vertices. In other
words, the maximum among all the distances between a vertex to all other vertices
is considered as the diameter of the graph G.
It is denoted by d(G).

2.2.5 CENTRAL POINT
If the eccentricity of the graph is equal to its radius, then it is known as central
point of the graph,

Or,

If r(V ) = e(V ), then V is the central point of the graph G.

2.2.6 CENTRE OF A GRAPH
The set of all the central point of the graph is known as centre of the graph.

2.2.7 EXAMPLE
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2.2.8 CIRCUMFERENCE OF A GRAPH
The total number of edges in the longest cycle of graph G is known as the circum-
ference of G.

2.2.9 GIRTH
The total number of edges in the shortest cycle of graph G is known as girth.
It is denoted by g(G).

2.2.10 EXAMPLE

For the above graph,

• Order = 9.

• Size (number of edges) = 18.

• Radius = 2.

• Circumference = 9.

• Girth = 3.
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CHAPTER 3

THE FIRST THEOREM OF
GRAPH THEORY

3.1 THE FIRST THEOREM
Theorem 3.1.1. For any graph G with e edges and n vertices: v1, v2, ..., vn,

n∑
i=1

d(vi) = 2e (3.1)

ie, In a graph G, the sum of the degrees of the vertices is equal to
twice the number of edges.

Proof.

Each edge, since it has two end vertices, contributes precisely 2 to the sum
of the degrees, i.e, when the degrees of the vertices are summed, each edge is
counted twice.
□
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3.1.1 EXAMPLE

In the above graph, we have,

1. d(v1) = 3

2. d(v2) = 4

3. d(v3) = 3

4. d(v4) = 3

5. d(v5) = 1

6. Number of edges, e = 7.

Then,
d(v1) + d(v2) + d(v3) + d(v4) + d(v5) = 14 = 2× e (3.2)

i.e.,
5∑

i=1

d(vi) = 2× 7 = 14 (3.3)

Remark 1. A vertex of a graph is called odd or even depending on
whether its degree is odd or even.
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EXAMPLE:

Here, the vertex degrees are:

1. d(1) = 3

2. d(2) = 3

3. d(3) = 3

4. d(4) = 3

Hence, all the vertices here are called odd vertices.

Corollary 3.1.1.1. In a graph G, there is an even number of odd
vertices.

Proof. Let W be the set of odd vertices of G and let U be the set of even
vertices of G.
Then, for each u ∈ U , d(u) is even.
Also, ∑

u∈U

d(u),

being a sum of even numbers, is even.
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However, by the previous theorem where V is the vertex set of G and e is the
number of its edges, ∑

u∈U

d(u) +
∑
w∈W

d(w) =
∑
v∈V

d(v) = 2e. (3.4)

Thus, ∑
w∈W

d(w) = 2e−
∑
u∈U

d(u), (3.5)

is even (being the difference of two even numbers).

As all the terms in: ∑
w∈W

d(w),

are odd and their sum is even, there must be an even number of them (because the
sum of an odd number of odd numbers is odd).
□

EXAMPLE:

In the above graph, d(v1) = 4, d(v2) = 3, d(v3) = 3, d(v4) = 3 and d(v5) = 3.
Hence, out of the 5 vertices, v2, v3, v4 and v5 have odd degrees, i.e., there is an
even number (4) of odd vertices.
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CHAPTER 4

APPLICATIONS OF GRAPH
THEORY

Graph Theory is used in vast area of science and technologies.

1. COMPUTER SCIENCE
In computer science, graph theory is used for the study of algorithms like:

• Dijkstra’s Algorithm : Dijkstra’s algorithm allows us to find the
shortest path between any two vertices of a graph. This algorithm
helps in finding the shortest paths between nodes in a graph, which
may represent, for example, road networks.
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• Prim’s Algorithm : Prim’s Algorithm is a greedy algorithm that is
used to find the subset of edges that includes every vertex of the graph
such that the sum of the weights of the edges can be minimized for a
weighted undirected graph.

• Kruskal’s Algorithm: Kruskal’s Algorithm is used to discover the
shortest path between two points in a connected weighted graph.

Moreover, graphs are used:

• To define the flow of computation.

• To represent networks of communication.

• To represent data organization.

• To find shortest path in road or a network.

• In Google Maps, various locations are represented as vertices or nodes
and the roads are represented as edges and graph theory is used to find
the shortest path between two nodes.

2. ELECTRICAL ENGINEERING

In Electrical Engineering, graph theory is used in designing of circuit con-
nections. These circuit connections are named as topologies. Some topolo-
gies are series, bridge, star and parallel topologies.

EXAMPLE:
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3. LINGUISTICS

• In linguistics, graphs are mostly used for parsing of a language tree
and grammar of a language tree.

• Semantics networks are used within lexical semantics, especially as
applied to computers, modeling word meaning is easier when a given
word is understood in terms of related words.

• Methods in phonology (e.g. theory of optimality, which uses lattice
graphs) and morphology (e.g. morphology of finite - state, using finite-
state transducers) are common in the analysis of language as a graph.

4. PHYSICS AND CHEMISTRY

• In physics and chemistry, graph theory is used to study molecules.

• The 3D structure of complicated simulated atomic structures can be
studied quantitatively by gathering statistics on graph-theoretic prop-
erties related to the topology of the atoms.

• Statistical physics also uses graphs. In this field graphs can represent
local connections between interacting parts of a system, as well as the
dynamics of a physical process on such systems.

• Graphs are also used to express the micro-scale channels of porous
media, in which the vertices represent the pores and the edges repre-
sent the smaller channels connecting the pores.

• Graph is also helpful in constructing the molecular structure as well
as lattice of the molecule. It also helps us to show the bond relation in
between atoms and molecules, also help in comparing structure of one
molecule to other.

5. COMPUTER NETWORK

• In computer network, the relationships among interconnected comput-
ers within the network, follow the principles of graph theory.

• Graph theory is widely used in modeling and routing in networks.

• Graph theory is also used in network security.
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6. SOCIAL SCIENCES

• Graph theory is also used in sociology. For example, to explore rumor
spreading, or to measure actors’ prestige notably through the use of
social network analysis software.

• Acquaintanceship and friendship graphs describe whether people know
each other or not.

• In influence graphs model, certain people can influence the behavior
of others.

• In collaboration graphs model to check whether two people work to-
gether in a particular way, such as acting in a movie together.

7. BIOLOGY

• Nodes in biological networks represent bio-molecules such as genes,
proteins or metabolites, and edges connecting these nodes indicate
functional, physical or chemical interactions between the correspond-
ing bio-molecules.

• Graph theory is used in transcriptional regulation networks.
• It is also used in Metabolic networks.
• In PPI (Protein - Protein interaction) networks graph theory is also

useful.
• Characterizing drug - drug target relationships.

8. MATHEMATICS
In mathematics, operational research is the important field. Graph theory
provides many useful applications in operational research like:

• Minimum cost path.
• A scheduling problem.

9. MISCELLANEOUS
Graphs are used to represent the routes between the cities. With the help of
tree that is a type of graph, we can create hierarchical ordered information
such as family tree.
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CONCLUSION

Graph theory has delivered important scientific discoveries, such as improved un-
derstanding of breakdown of electricity distribution systems or the propagation of
infections in social networks, till date.

Graph theory also provides a remarkably simple way to characterize the com-
plexity of ecological networks. Indices such as connectance, degree distribution
or network topology serve as basic measurements to describe their structure. Such
indices facilitate comparison between different systems and revealing commonali-
ties and variations. Nowadays, the relatively important number of network studies
leads to a myriads of ways to sample, analyze and interpret them.

Graph theory is an exceptionally rich area for programmers and designers. Graphs
can be used to solve some very complex problems, such as least cost routing, map-
ping, program analysis, and so on. Network devices, such as routers and switches,
use graphs to calculate optimal routing for traffic.

Graph theory is rapidly moving into the mainstream of mathematics mainly be-
cause of its applications in diverse fields which include biochemistry (genomics),
electrical engineering (communications networks and coding theory), computer
science (algorithms and computations) and operations research (scheduling).

Hence, studying graphs through a framework provides answers to many arrange-
ment, networking, optimization, matching and operational problems. Graphs can
be used to model many types of relations and processes in physical, biological,
social and information systems, and has a wide range of useful applications.
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INTRODUCTION

In mathematics, graph theory is the study of graphs, which are mathematical struc-
tures used to model pairwise relations between objects. Graph theory is a delight-
ful playground for the exploration of proof techniques in Discrete Mathematics.
The results of graph theory have applications in many areas of the computing,
social and natural sciences. One of the beauties of graph theory is that it depends
very little on other branches of mathematics. The subject of graph theory had its
beginnings in recreational math problems but it has grown into a significant area
of mathematical research, with applications in chemistry, operations research, so-
cial sciences, and computer science.

Graph Theory can model and study many real-world problems and is applied in a
wide range of disciplines. In computer science, graph theory is used to model net-
works and communications as seen in the case of Google search, Google Maps and
social media. Furthermore, graph theory is used in chemistry to model molecules
and in biology to study genomes. It is even used in linguistics and social sciences.
Using graph theory in Machine Learning and neural network is also one of the
new trends.

The history of graph theory may be specifically traced to 1735, when the Swiss
mathematician Leonhard Euler solved the Königsberg bridge problem. The Königs-
berg bridge problem was an old puzzle concerning the possibility of finding a
path over every one of seven bridges that span a forked river flowing past an is-
land—but without crossing any bridge twice. Euler argued that no such path exists
since in Königsberg, the four land masses were connected by an odd number of
bridges, it was impossible to draw the desired route. His proof involved only ref-
erences to the physical arrangement of the bridges, but essentially he proved the
first theorem in graph theory.
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CHAPTER 1

BASIC CONCEPTS IN GRAPH
THEORY

1.1 GRAPH
A graph G = (V(G),E(G)) consists of two finite sets:

i The vertex set of the graph, denoted by V(G) or V, which is a non-empty set
of elements called vertices,

ii The edge set of the graph, denoted by E(G) or E, which is a possible empty
set of elements called edges,

such that each edge e in E is assigned an unordered pair of vertices (u,v) called
the end vertices of e.

Vertices of a graph are also known as nodes or points while edges are also called
links or lines.

1.1.1 EXAMPLE
Let G = (V,E) where V = {a, b, c, d, e}, E = {e1, e2, e3, e4, e5, e6, e7, e8}, and the
ends of edges are given by:

e1 ←→ (a, b) e2 ←→ (b, c) e3 ←→ (c, c) e4 ←→ (c, d) e5 ←→ (b, d)
e6 ←→ (d, e) e7 ←→ (b, e) e8 ←→ (b, e).

2
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Then, G can be represented diagrammatically as:

1.2 SUBGRAPHS
Let H be a graph with vertex set V (H) and edge set E(H) and similarly, let G
be a graph with vertex set V (G) and edge set E(G). Then we say that H is a
subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). In such a case, we also say
that G is a supergraph of H .

In the above example, G1 is a subgraph of both G2 and G3. But, G3 is not a
subgraph of G2.

1.2.1 PROPER SUBGRAPH
If H is a subgraph of G then we write: H ⊆ G. When H ⊆ G but H ̸= G, i.e.,
V (H) ̸= V (G) or E(H) ̸= E(G), then H is called a proper subgraph of G.
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1.2.2 EXAMPLE

1.2.3 SPANNING SUBGRAPH
A spanning subgraph of a graph G is a subgraph H with V (H) = V (G), i.e., H
and G have exactly the same vertex set.

1.2.4 EXAMPLE
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1.3 SOME DEFINITIONS
Definition 1.1. LOOP

An edge for which two end vertices are the same is called a loop.

Definition 1.2. PARALLEL EDGES

If two or more edges of G have the same end vertices, these edges
are called multiple or parallel edges.

Definition 1.3. INCIDENT EDGE

Any edge is said to be incident to the vertices connected by the
edge.

Definition 1.4. ADJACENT VERTEX

A vertex is said to be adjacent to other vertices if it has an edge
connecting it to the vertices.

Definition 1.5. ISOLATED VERTEX

Any vertex without any edges coming in or out of it is called an
isolated vertex.

Definition 1.6. VERTEX DEGREES

Let v be a vertex of a graph G. The degree d(v) of v is the number
of edges of G incident with v, counting each loop twice, i.e., it is the
number of times v is an end vertex of an edge.

Definition 1.7. BIPARTITION

Let G be a graph. If the vertex set V of G can be partitioned into
two non-empty subsets X and Y in such a way that each edge of G
has one end in X and one end in Y , then G is called bipartite.
The partition V is called a bipartition of G.
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1.4 PATHS, CYCLES AND TREES

1.4.1 WALK
A walk in a graph G is a finite sequence:

W = v0e1v1e2v2...vk−1ekvk (1.1)

whose terms are alternatively vertices and edges such that, for 1 ≤ i ≤ k, the
edge ei has ends vi−1 and vi. Thus, each edge ei is immediately preceded and
succeeded by the two vertices with which it is incident.

The walk W in (2.1) is a v0 − vk walk, or, a walk from v0 to vk. The vertex
v0 is called the origin of the walk while vk is called the terminus of W . (v0 and
vk need not be distinct.)
The vertices v1, v2,...,vk−1, in a walk W are called its internal vertices. The inte-
ger k, the number of edges in the walk, is called the length of W .

1.4.2 TRIVIAL WALK
A trivial walk is a walk containing no edges.
Thus, for any vertex v of a graph G,

W = v

gives a trivial walk. It has length 0.

1.4.3 CLOSED AND OPEN WALK
For two given vertices u and v of a graph G, a u − v walk is said to be closed or
open depending on whether u = v or u ̸= v.

1.4.4 TRAIL
If the edges e1, e2, ..., ek of the walk W = v0 e1 v1 e2 v2...ekvk are distinct, W is
called a trail.

6
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1.4.5 PATH
If the vertices v0, v1, ..., vk of the walk W = v0 e1 v1 e2 v2...ek vk are distinct then
W is called a path.
A path with n vertices is sometimes denoted by Pn and it has length n− 1.

1.4.6 EXAMPLE

Let the above graph G be such that the walks W1, W2, W3, W4 be defined as:

• W1 = v1 e1 v2 e5 v3 e10 v3 e5 v2 e3 v5

• W2 = v1 e1 v2 e1 v1 e1 v2

• W3 = v1 v5 v2 v4 v3 v1

• W4 = v2 v4 v3 v5 v1

Here, the length of:

1. W1 = 5

2. W2 = 3

3. W3 = 5

4. W4 = 4.
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Then,

1. W1, W2 and W4 are open walks while W3 is a closed walk.

2. W3, W4 are trails but W1 and W2 aren’t.

3. W4 is a path but W1, W2 and W3 aren’t.

Theorem 1.4.1. Given any two vertices u and v of a graph G, every
u− v walk contains a u− v path,
i.e., given any walk,

W = u e1 v1...vk−1 ek v

then, after some deletion of vertices and edges if necessary, we can
find a sub-sequence P of W which is a u− v path.

Proof. If u = v, i.e.,if W is closed, then the trivial path P = u will do.

Now suppose u ̸= v,i.e.,W is open and let the vertices of W be given, in order,
by:

u = u0, u1, u2, ..., uk−1, uk = v.

If none of the vertices of G occurs in W more than once, then W is already a u−v
path and so we are finished by taking P = W .

So now suppose that there are vertices of G that occur in W twice or more.
Then there are distinct i, j with i < j, say, such that ui = uj . If the terms
ui, ui+1, ..., uj−1 (and the preceding edges) are deleted from W then we obtain a
u− v walk W1 having fewer vertices than W . If there is no repetition of vertices
in W1, then W1 is a u− v path and setting P = W1 finishes the proof.
If this is not the case, then we repeat the above deletion procedure until finally
arriving at a u− v walk that is a path, as required. □
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1.4.7 CYCLE
A non-trivial closed trail in a graph G is called a cycle if its origin and internal
vertices are distinct i.e.,
A cycle in a graph is a non-empty trail in which only the first and last vertices are
equal.

A cycle of length k is called a k − cycle. A k − cycle is called odd or even
depending on whether k is odd or even.

A 3−cycle is often called a triangle. An n−cycle, i.e., a cycle with n vertices,
will sometimes be denoted by Cn.

EXAMPLE 1:

In the above example,

1. C = v1 v2 v3 v4 v1 is a 4-cycle.

2. T = v1 v2 v5 v3 v4 v5 v1 in a non-trivial closed trail which is not a cycle since
v5 occurs twice as an internal vertex.

3. C1 = v1 v2 v5 v1 is a triangle.

EXAMPLE 2:

Here, 0 → 1 → 2 → 3 → 0 is a 4-cycle but 0 → 1 → 2 → 4 → 2 → 3 → 0 is
not a cycle since the vertex 2, an internal vertex, occurs twice.

9



CHAPTER 1. BASIC CONCEPTS IN GRAPH THEORY

1.4.8 TREES
A graph G is called acyclic if it contains no cycles.
A graph G is called a tree if it is a connected acyclic graph, i.e., A tree is an undi-
rected graph in which any two vertices are connected by exactly one path.

EXAMPLE 1:

The above graph is an undirected connected acyclic graph and thus, a tree.

EXAMPLE 2:

The above example shows the representation of the first four hydrocarbons as
trees.

10



CHAPTER 2

TYPES AND PROPERTIES OF
GRAPHS

2.1 TYPES OF GRAPHS
Definition 2.1. NULL GRAPH

A null graph is a graph in which there are no edges between its
vertices. A null graph is also called empty graph.

EXAMPLE:

In all the above graphs, there are no edges between the vertices.

Definition 2.2. TRIVIAL GRAPH

A trivial graph is the graph which has only one vertex.

11



CHAPTER 2. TYPES AND PROPERTIES OF GRAPHS

EXAMPLE:

In the above graph, there is only one vertex ’v’ without any edge.
Therefore, it is a trivial graph.

Definition 2.3. SIMPLE GRAPH

A simple graph is the undirected graph with no parallel edges and
no loops. A simple graph which has n vertices, the degree of every
vertex is at most n− 1.

EXAMPLE:

Definition 2.4. UNDIRECTED GRAPH

An undirected graph is a graph whose edges are not directed. The
relations between pairs of vertices in an undirected graph are sym-
metric, so that each edge has no directional character. They only
represent whether or not a relationship exists between two vertices.
Thus, all the edges in an undirected graph are bidirectional.

12



CHAPTER 2. TYPES AND PROPERTIES OF GRAPHS

EXAMPLE:

Definition 2.5. DIRECTED GRAPH

A directed graph is a graph in which the edges are directed by ar-
rows.
Directed graphs are also known as digraphs.

EXAMPLE:

In the above graph, each edge is directed by the arrow. A directed
edge has an arrow from A to B means A is related to B but B is not
related to A.

13



CHAPTER 2. TYPES AND PROPERTIES OF GRAPHS

Definition 2.6. COMPLETE GRAPH

A graph in which every pair of vertices is joined by exactly one
edge is called complete graph. It contains all possible edges.
A complete graph with n vertices contains exactly

(
n
2

)
edges.

EXAMPLE:

In the above example, since each vertex in the graph is connected with
all the remaining vertices through exactly one edge, both are complete
graphs.

Definition 2.7. CONNECTED GRAPH

A connected graph is a graph in which we can visit from any one
vertex to any other vertex. In a connected graph, at least one edge or
path exists between every pair of vertices.

EXAMPLE:

In the above example, we can traverse from any one vertex to any
other vertex. It means there exists at least one path between every
pair of vertices therefore, it a connected graph.

14



CHAPTER 2. TYPES AND PROPERTIES OF GRAPHS

Definition 2.8. DISCONNECTED GRAPH

A disconnected graph is a graph in which any path does not exist
between every pair of vertices.

EXAMPLE:

The above graph consists of two independent components which are
disconnected. Since it is not possible to visit from the vertices of one
component to the vertices of other components, it is a disconnected
graph.

Definition 2.9. REGULAR GRAPH

A regular graph is a graph in which degree of all the vertices is
same.
If the degree of all the vertices is k, then it is called k − regulargraph.

EXAMPLE:

In the above example, all the vertices have degree 2. Therefore they
are called 2−Regulargraph.
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CHAPTER 2. TYPES AND PROPERTIES OF GRAPHS

Definition 2.10. CYCLIC GRAPH

A graph with n vertices (where n >= 3) and n edges forming a cycle
of n with all its edges is known as cycle graph.
In the cycle graph, degree of each vertex is 2.

A graph containing at least one cycle in it is known as a cyclic
graph.

EXAMPLE:

In the above example, all the vertices have degree 2. Therefore they
all are cyclic graphs.

The above graph contains two cycles in it and therefore it is a cyclic
graph.

Definition 2.11. ACYCLIC GRAPH

A graph which does not contain any cycle in it is called as an
acyclic graph.

16



CHAPTER 2. TYPES AND PROPERTIES OF GRAPHS

EXAMPLE:

Definition 2.12. BIPARTITE GRAPH

A bipartite graph is a graph in which the vertex set can be parti-
tioned into two sets such that edges only go between sets, not within
them.
A graph G(V,E) is called bipartite graph if its vertex-set V (G) can be
decomposed into two non-empty disjoint subsets V1(G) and V2(G) in
such a way that each edge e ∈ E(G) has its one last joint in V1(G) and
other last point in V2(G).
The partition V = V 1 ∪ V 2 is known as bipartition of G.

EXAMPLE 1:

17



CHAPTER 2. TYPES AND PROPERTIES OF GRAPHS

EXAMPLE 2:

Definition 2.13. COMPLETE BIPARTITE GRAPH

A complete bipartite graph is a bipartite graph in which each ver-
tex in the first set is joined to each vertex in the second set by exactly
one edge.
A complete bipartite graph is a bipartite graph which is complete.

CompleteBipartiteGraph = BipartiteGraph+ CompleteGraph (2.1)

EXAMPLE:

The above graph is known as K4,3

18



CHAPTER 2. TYPES AND PROPERTIES OF GRAPHS

Definition 2.14. STAR GRAPH

A star graph is a complete bipartite graph in which n − 1 vertices
have degree 1 and a single vertex has degree (n − 1). This exactly
looks like a star where (n− 1) vertices are connected to a single cen-
tral vertex.
A star graph with n vertices is denoted by Sn.

EXAMPLE:

In the above example, out of n vertices, all the (n − 1) vertices are
connected to a single vertex. Hence, it is a star graph.

Definition 2.15. WEIGHTED GRAPH

A weighted graph is a graph whose edges have been labeled with
some weights or numbers.
The length of a path in a weighted graph is the sum of the weights of
all the edges in the path.

EXAMPLE:

19



CHAPTER 2. TYPES AND PROPERTIES OF GRAPHS

In the above graph, if the path chosen is a→ b→ c→ d→ e→ g then
the length of the path is :

5 + 4 + 5 + 6 + 5 = 25.

Definition 2.16. MULTI GRAPH

A graph in which there are multiple edges between any pair of ver-
tices or there are edges from a vertex to itself (loop) is called a multi -
graph.

EXAMPLE:

In the above graph, vertex-set B and C are connected with two edges.
Similarly, vertex sets E and F are connected with 3 edges. Therefore,
it is a multi graph.

Definition 2.17. PLANAR GRAPH

A planar graph is a graph that we can draw in a plane in such
a way that no two edges of it cross each other except at a vertex to
which they are incident,
i.e., A planar graph is a graph that can be embedded in the plane
such that its edges intersect only at their endpoints.

20



CHAPTER 2. TYPES AND PROPERTIES OF GRAPHS

EXAMPLE:

The above graph may not seem to be planar because it has edges
crossing each other. But we can redraw the above graph.

The three plane drawings of the above graph are:

The above three graphs do not consist of two edges crossing each
other and therefore, all the above graphs are planar.

2.2 PROPERTIES OF GRAPHS

2.2.1 DISTANCE BETWEEN TWO VERTICES
Distance is basically the number of edges in a shortest path between vertex X and
vertex Y . If there are many paths connecting two vertices, then the shortest path
is considered as the distance between the two vertices.
Distance between any two vertices X and Y is denoted by d(X, Y ).
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CHAPTER 2. TYPES AND PROPERTIES OF GRAPHS

EXAMPLE:

Suppose, we want to find the distance between vertex B and D. Then, first of all,
we have to find the shortest path between vertex B and D.
There are many paths from vertex B to vertex D:

• B→ C→ A→ D. Here, length = 3

• B→ D. Length = 1 (Shortest Path)

• B→ A→ D. Length = 2

• B→ C→ D. Length = 2

• B→ C→ A→ D. Length = 3

Hence, the minimum distance between vertex B and vertex D is 1.

2.2.2 ECCENTRICITY OF A VERTEX
Eccentricity of a vertex is the maximum distance between a vertex to all other
vertices. It is denoted by e(V ).
For a disconnected graph, all vertices are defined to have infinite eccentricity.
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CHAPTER 2. TYPES AND PROPERTIES OF GRAPHS

2.2.3 RADIUS OF CONNECTED GRAPHS
The radius of a connected graph is the minimum eccentricity from all the vertices.
In other words, the minimum among all the distances between a vertex to all other
vertices is called as the radius of the graph.
It is denoted by r(G).

2.2.4 DIAMETER OF A GRAPH
Diameter of a graph is the maximum eccentricity from all the vertices. In other
words, the maximum among all the distances between a vertex to all other vertices
is considered as the diameter of the graph G.
It is denoted by d(G).

2.2.5 CENTRAL POINT
If the eccentricity of the graph is equal to its radius, then it is known as central
point of the graph,

Or,

If r(V ) = e(V ), then V is the central point of the graph G.

2.2.6 CENTRE OF A GRAPH
The set of all the central point of the graph is known as centre of the graph.

2.2.7 EXAMPLE

23



CHAPTER 2. TYPES AND PROPERTIES OF GRAPHS

2.2.8 CIRCUMFERENCE OF A GRAPH
The total number of edges in the longest cycle of graph G is known as the circum-
ference of G.

2.2.9 GIRTH
The total number of edges in the shortest cycle of graph G is known as girth.
It is denoted by g(G).

2.2.10 EXAMPLE

For the above graph,

• Order = 9.

• Size (number of edges) = 18.

• Radius = 2.

• Circumference = 9.

• Girth = 3.
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CHAPTER 3

THE FIRST THEOREM OF
GRAPH THEORY

3.1 THE FIRST THEOREM
Theorem 3.1.1. For any graph G with e edges and n vertices: v1, v2, ..., vn,

n∑
i=1

d(vi) = 2e (3.1)

ie, In a graph G, the sum of the degrees of the vertices is equal to
twice the number of edges.

Proof.

Each edge, since it has two end vertices, contributes precisely 2 to the sum
of the degrees, i.e, when the degrees of the vertices are summed, each edge is
counted twice.
□
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CHAPTER 3. THE FIRST THEOREM OF GRAPH THEORY

3.1.1 EXAMPLE

In the above graph, we have,

1. d(v1) = 3

2. d(v2) = 4

3. d(v3) = 3

4. d(v4) = 3

5. d(v5) = 1

6. Number of edges, e = 7.

Then,
d(v1) + d(v2) + d(v3) + d(v4) + d(v5) = 14 = 2× e (3.2)

i.e.,
5∑

i=1

d(vi) = 2× 7 = 14 (3.3)

Remark 1. A vertex of a graph is called odd or even depending on
whether its degree is odd or even.
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CHAPTER 3. THE FIRST THEOREM OF GRAPH THEORY

EXAMPLE:

Here, the vertex degrees are:

1. d(1) = 3

2. d(2) = 3

3. d(3) = 3

4. d(4) = 3

Hence, all the vertices here are called odd vertices.

Corollary 3.1.1.1. In a graph G, there is an even number of odd
vertices.

Proof. Let W be the set of odd vertices of G and let U be the set of even
vertices of G.
Then, for each u ∈ U , d(u) is even.
Also, ∑

u∈U

d(u),

being a sum of even numbers, is even.
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CHAPTER 3. THE FIRST THEOREM OF GRAPH THEORY

However, by the previous theorem where V is the vertex set of G and e is the
number of its edges, ∑

u∈U

d(u) +
∑
w∈W

d(w) =
∑
v∈V

d(v) = 2e. (3.4)

Thus, ∑
w∈W

d(w) = 2e−
∑
u∈U

d(u), (3.5)

is even (being the difference of two even numbers).

As all the terms in: ∑
w∈W

d(w),

are odd and their sum is even, there must be an even number of them (because the
sum of an odd number of odd numbers is odd).
□

EXAMPLE:

In the above graph, d(v1) = 4, d(v2) = 3, d(v3) = 3, d(v4) = 3 and d(v5) = 3.
Hence, out of the 5 vertices, v2, v3, v4 and v5 have odd degrees, i.e., there is an
even number (4) of odd vertices.
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CHAPTER 4

APPLICATIONS OF GRAPH
THEORY

Graph Theory is used in vast area of science and technologies.

1. COMPUTER SCIENCE
In computer science, graph theory is used for the study of algorithms like:

• Dijkstra’s Algorithm : Dijkstra’s algorithm allows us to find the
shortest path between any two vertices of a graph. This algorithm
helps in finding the shortest paths between nodes in a graph, which
may represent, for example, road networks.
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CHAPTER 4. APPLICATIONS OF GRAPH THEORY

• Prim’s Algorithm : Prim’s Algorithm is a greedy algorithm that is
used to find the subset of edges that includes every vertex of the graph
such that the sum of the weights of the edges can be minimized for a
weighted undirected graph.

• Kruskal’s Algorithm: Kruskal’s Algorithm is used to discover the
shortest path between two points in a connected weighted graph.

Moreover, graphs are used:

• To define the flow of computation.

• To represent networks of communication.

• To represent data organization.

• To find shortest path in road or a network.

• In Google Maps, various locations are represented as vertices or nodes
and the roads are represented as edges and graph theory is used to find
the shortest path between two nodes.

2. ELECTRICAL ENGINEERING

In Electrical Engineering, graph theory is used in designing of circuit con-
nections. These circuit connections are named as topologies. Some topolo-
gies are series, bridge, star and parallel topologies.

EXAMPLE:
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CHAPTER 4. APPLICATIONS OF GRAPH THEORY

3. LINGUISTICS

• In linguistics, graphs are mostly used for parsing of a language tree
and grammar of a language tree.

• Semantics networks are used within lexical semantics, especially as
applied to computers, modeling word meaning is easier when a given
word is understood in terms of related words.

• Methods in phonology (e.g. theory of optimality, which uses lattice
graphs) and morphology (e.g. morphology of finite - state, using finite-
state transducers) are common in the analysis of language as a graph.

4. PHYSICS AND CHEMISTRY

• In physics and chemistry, graph theory is used to study molecules.

• The 3D structure of complicated simulated atomic structures can be
studied quantitatively by gathering statistics on graph-theoretic prop-
erties related to the topology of the atoms.

• Statistical physics also uses graphs. In this field graphs can represent
local connections between interacting parts of a system, as well as the
dynamics of a physical process on such systems.

• Graphs are also used to express the micro-scale channels of porous
media, in which the vertices represent the pores and the edges repre-
sent the smaller channels connecting the pores.

• Graph is also helpful in constructing the molecular structure as well
as lattice of the molecule. It also helps us to show the bond relation in
between atoms and molecules, also help in comparing structure of one
molecule to other.

5. COMPUTER NETWORK

• In computer network, the relationships among interconnected comput-
ers within the network, follow the principles of graph theory.

• Graph theory is widely used in modeling and routing in networks.

• Graph theory is also used in network security.
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CHAPTER 4. APPLICATIONS OF GRAPH THEORY

6. SOCIAL SCIENCES

• Graph theory is also used in sociology. For example, to explore rumor
spreading, or to measure actors’ prestige notably through the use of
social network analysis software.

• Acquaintanceship and friendship graphs describe whether people know
each other or not.

• In influence graphs model, certain people can influence the behavior
of others.

• In collaboration graphs model to check whether two people work to-
gether in a particular way, such as acting in a movie together.

7. BIOLOGY

• Nodes in biological networks represent bio-molecules such as genes,
proteins or metabolites, and edges connecting these nodes indicate
functional, physical or chemical interactions between the correspond-
ing bio-molecules.

• Graph theory is used in transcriptional regulation networks.
• It is also used in Metabolic networks.
• In PPI (Protein - Protein interaction) networks graph theory is also

useful.
• Characterizing drug - drug target relationships.

8. MATHEMATICS
In mathematics, operational research is the important field. Graph theory
provides many useful applications in operational research like:

• Minimum cost path.
• A scheduling problem.

9. MISCELLANEOUS
Graphs are used to represent the routes between the cities. With the help of
tree that is a type of graph, we can create hierarchical ordered information
such as family tree.
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CONCLUSION

Graph theory has delivered important scientific discoveries, such as improved un-
derstanding of breakdown of electricity distribution systems or the propagation of
infections in social networks, till date.

Graph theory also provides a remarkably simple way to characterize the com-
plexity of ecological networks. Indices such as connectance, degree distribution
or network topology serve as basic measurements to describe their structure. Such
indices facilitate comparison between different systems and revealing commonali-
ties and variations. Nowadays, the relatively important number of network studies
leads to a myriads of ways to sample, analyze and interpret them.

Graph theory is an exceptionally rich area for programmers and designers. Graphs
can be used to solve some very complex problems, such as least cost routing, map-
ping, program analysis, and so on. Network devices, such as routers and switches,
use graphs to calculate optimal routing for traffic.

Graph theory is rapidly moving into the mainstream of mathematics mainly be-
cause of its applications in diverse fields which include biochemistry (genomics),
electrical engineering (communications networks and coding theory), computer
science (algorithms and computations) and operations research (scheduling).

Hence, studying graphs through a framework provides answers to many arrange-
ment, networking, optimization, matching and operational problems. Graphs can
be used to model many types of relations and processes in physical, biological,
social and information systems, and has a wide range of useful applications.
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INTRODUCTION

In mathematics, graph theory is the study of graphs, which are mathematical struc-
tures used to model pairwise relations between objects. Graph theory is a delight-
ful playground for the exploration of proof techniques in Discrete Mathematics.
The results of graph theory have applications in many areas of the computing,
social and natural sciences. One of the beauties of graph theory is that it depends
very little on other branches of mathematics. The subject of graph theory had its
beginnings in recreational math problems but it has grown into a significant area
of mathematical research, with applications in chemistry, operations research, so-
cial sciences, and computer science.

Graph Theory can model and study many real-world problems and is applied in a
wide range of disciplines. In computer science, graph theory is used to model net-
works and communications as seen in the case of Google search, Google Maps and
social media. Furthermore, graph theory is used in chemistry to model molecules
and in biology to study genomes. It is even used in linguistics and social sciences.
Using graph theory in Machine Learning and neural network is also one of the
new trends.

The history of graph theory may be specifically traced to 1735, when the Swiss
mathematician Leonhard Euler solved the Königsberg bridge problem. The Königs-
berg bridge problem was an old puzzle concerning the possibility of finding a
path over every one of seven bridges that span a forked river flowing past an is-
land—but without crossing any bridge twice. Euler argued that no such path exists
since in Königsberg, the four land masses were connected by an odd number of
bridges, it was impossible to draw the desired route. His proof involved only ref-
erences to the physical arrangement of the bridges, but essentially he proved the
first theorem in graph theory.
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CHAPTER 1

BASIC CONCEPTS IN GRAPH
THEORY

1.1 GRAPH
A graph G = (V(G),E(G)) consists of two finite sets:

i The vertex set of the graph, denoted by V(G) or V, which is a non-empty set
of elements called vertices,

ii The edge set of the graph, denoted by E(G) or E, which is a possible empty
set of elements called edges,

such that each edge e in E is assigned an unordered pair of vertices (u,v) called
the end vertices of e.

Vertices of a graph are also known as nodes or points while edges are also called
links or lines.

1.1.1 EXAMPLE
Let G = (V,E) where V = {a, b, c, d, e}, E = {e1, e2, e3, e4, e5, e6, e7, e8}, and the
ends of edges are given by:

e1 ←→ (a, b) e2 ←→ (b, c) e3 ←→ (c, c) e4 ←→ (c, d) e5 ←→ (b, d)
e6 ←→ (d, e) e7 ←→ (b, e) e8 ←→ (b, e).

2



CHAPTER 1. BASIC CONCEPTS IN GRAPH THEORY

Then, G can be represented diagrammatically as:

1.2 SUBGRAPHS
Let H be a graph with vertex set V (H) and edge set E(H) and similarly, let G
be a graph with vertex set V (G) and edge set E(G). Then we say that H is a
subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). In such a case, we also say
that G is a supergraph of H .

In the above example, G1 is a subgraph of both G2 and G3. But, G3 is not a
subgraph of G2.

1.2.1 PROPER SUBGRAPH
If H is a subgraph of G then we write: H ⊆ G. When H ⊆ G but H ̸= G, i.e.,
V (H) ̸= V (G) or E(H) ̸= E(G), then H is called a proper subgraph of G.
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CHAPTER 1. BASIC CONCEPTS IN GRAPH THEORY

1.2.2 EXAMPLE

1.2.3 SPANNING SUBGRAPH
A spanning subgraph of a graph G is a subgraph H with V (H) = V (G), i.e., H
and G have exactly the same vertex set.

1.2.4 EXAMPLE

4
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1.3 SOME DEFINITIONS
Definition 1.1. LOOP

An edge for which two end vertices are the same is called a loop.

Definition 1.2. PARALLEL EDGES

If two or more edges of G have the same end vertices, these edges
are called multiple or parallel edges.

Definition 1.3. INCIDENT EDGE

Any edge is said to be incident to the vertices connected by the
edge.

Definition 1.4. ADJACENT VERTEX

A vertex is said to be adjacent to other vertices if it has an edge
connecting it to the vertices.

Definition 1.5. ISOLATED VERTEX

Any vertex without any edges coming in or out of it is called an
isolated vertex.

Definition 1.6. VERTEX DEGREES

Let v be a vertex of a graph G. The degree d(v) of v is the number
of edges of G incident with v, counting each loop twice, i.e., it is the
number of times v is an end vertex of an edge.

Definition 1.7. BIPARTITION

Let G be a graph. If the vertex set V of G can be partitioned into
two non-empty subsets X and Y in such a way that each edge of G
has one end in X and one end in Y , then G is called bipartite.
The partition V is called a bipartition of G.
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1.4 PATHS, CYCLES AND TREES

1.4.1 WALK
A walk in a graph G is a finite sequence:

W = v0e1v1e2v2...vk−1ekvk (1.1)

whose terms are alternatively vertices and edges such that, for 1 ≤ i ≤ k, the
edge ei has ends vi−1 and vi. Thus, each edge ei is immediately preceded and
succeeded by the two vertices with which it is incident.

The walk W in (2.1) is a v0 − vk walk, or, a walk from v0 to vk. The vertex
v0 is called the origin of the walk while vk is called the terminus of W . (v0 and
vk need not be distinct.)
The vertices v1, v2,...,vk−1, in a walk W are called its internal vertices. The inte-
ger k, the number of edges in the walk, is called the length of W .

1.4.2 TRIVIAL WALK
A trivial walk is a walk containing no edges.
Thus, for any vertex v of a graph G,

W = v

gives a trivial walk. It has length 0.

1.4.3 CLOSED AND OPEN WALK
For two given vertices u and v of a graph G, a u − v walk is said to be closed or
open depending on whether u = v or u ̸= v.

1.4.4 TRAIL
If the edges e1, e2, ..., ek of the walk W = v0 e1 v1 e2 v2...ekvk are distinct, W is
called a trail.

6



CHAPTER 1. BASIC CONCEPTS IN GRAPH THEORY

1.4.5 PATH
If the vertices v0, v1, ..., vk of the walk W = v0 e1 v1 e2 v2...ek vk are distinct then
W is called a path.
A path with n vertices is sometimes denoted by Pn and it has length n− 1.

1.4.6 EXAMPLE

Let the above graph G be such that the walks W1, W2, W3, W4 be defined as:

• W1 = v1 e1 v2 e5 v3 e10 v3 e5 v2 e3 v5

• W2 = v1 e1 v2 e1 v1 e1 v2

• W3 = v1 v5 v2 v4 v3 v1

• W4 = v2 v4 v3 v5 v1

Here, the length of:

1. W1 = 5

2. W2 = 3

3. W3 = 5

4. W4 = 4.

7



CHAPTER 1. BASIC CONCEPTS IN GRAPH THEORY

Then,

1. W1, W2 and W4 are open walks while W3 is a closed walk.

2. W3, W4 are trails but W1 and W2 aren’t.

3. W4 is a path but W1, W2 and W3 aren’t.

Theorem 1.4.1. Given any two vertices u and v of a graph G, every
u− v walk contains a u− v path,
i.e., given any walk,

W = u e1 v1...vk−1 ek v

then, after some deletion of vertices and edges if necessary, we can
find a sub-sequence P of W which is a u− v path.

Proof. If u = v, i.e.,if W is closed, then the trivial path P = u will do.

Now suppose u ̸= v,i.e.,W is open and let the vertices of W be given, in order,
by:

u = u0, u1, u2, ..., uk−1, uk = v.

If none of the vertices of G occurs in W more than once, then W is already a u−v
path and so we are finished by taking P = W .

So now suppose that there are vertices of G that occur in W twice or more.
Then there are distinct i, j with i < j, say, such that ui = uj . If the terms
ui, ui+1, ..., uj−1 (and the preceding edges) are deleted from W then we obtain a
u− v walk W1 having fewer vertices than W . If there is no repetition of vertices
in W1, then W1 is a u− v path and setting P = W1 finishes the proof.
If this is not the case, then we repeat the above deletion procedure until finally
arriving at a u− v walk that is a path, as required. □

8
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1.4.7 CYCLE
A non-trivial closed trail in a graph G is called a cycle if its origin and internal
vertices are distinct i.e.,
A cycle in a graph is a non-empty trail in which only the first and last vertices are
equal.

A cycle of length k is called a k − cycle. A k − cycle is called odd or even
depending on whether k is odd or even.

A 3−cycle is often called a triangle. An n−cycle, i.e., a cycle with n vertices,
will sometimes be denoted by Cn.

EXAMPLE 1:

In the above example,

1. C = v1 v2 v3 v4 v1 is a 4-cycle.

2. T = v1 v2 v5 v3 v4 v5 v1 in a non-trivial closed trail which is not a cycle since
v5 occurs twice as an internal vertex.

3. C1 = v1 v2 v5 v1 is a triangle.

EXAMPLE 2:

Here, 0 → 1 → 2 → 3 → 0 is a 4-cycle but 0 → 1 → 2 → 4 → 2 → 3 → 0 is
not a cycle since the vertex 2, an internal vertex, occurs twice.

9
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1.4.8 TREES
A graph G is called acyclic if it contains no cycles.
A graph G is called a tree if it is a connected acyclic graph, i.e., A tree is an undi-
rected graph in which any two vertices are connected by exactly one path.

EXAMPLE 1:

The above graph is an undirected connected acyclic graph and thus, a tree.

EXAMPLE 2:

The above example shows the representation of the first four hydrocarbons as
trees.
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CHAPTER 2

TYPES AND PROPERTIES OF
GRAPHS

2.1 TYPES OF GRAPHS
Definition 2.1. NULL GRAPH

A null graph is a graph in which there are no edges between its
vertices. A null graph is also called empty graph.

EXAMPLE:

In all the above graphs, there are no edges between the vertices.

Definition 2.2. TRIVIAL GRAPH

A trivial graph is the graph which has only one vertex.

11
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EXAMPLE:

In the above graph, there is only one vertex ’v’ without any edge.
Therefore, it is a trivial graph.

Definition 2.3. SIMPLE GRAPH

A simple graph is the undirected graph with no parallel edges and
no loops. A simple graph which has n vertices, the degree of every
vertex is at most n− 1.

EXAMPLE:

Definition 2.4. UNDIRECTED GRAPH

An undirected graph is a graph whose edges are not directed. The
relations between pairs of vertices in an undirected graph are sym-
metric, so that each edge has no directional character. They only
represent whether or not a relationship exists between two vertices.
Thus, all the edges in an undirected graph are bidirectional.

12
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EXAMPLE:

Definition 2.5. DIRECTED GRAPH

A directed graph is a graph in which the edges are directed by ar-
rows.
Directed graphs are also known as digraphs.

EXAMPLE:

In the above graph, each edge is directed by the arrow. A directed
edge has an arrow from A to B means A is related to B but B is not
related to A.

13
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Definition 2.6. COMPLETE GRAPH

A graph in which every pair of vertices is joined by exactly one
edge is called complete graph. It contains all possible edges.
A complete graph with n vertices contains exactly

(
n
2

)
edges.

EXAMPLE:

In the above example, since each vertex in the graph is connected with
all the remaining vertices through exactly one edge, both are complete
graphs.

Definition 2.7. CONNECTED GRAPH

A connected graph is a graph in which we can visit from any one
vertex to any other vertex. In a connected graph, at least one edge or
path exists between every pair of vertices.

EXAMPLE:

In the above example, we can traverse from any one vertex to any
other vertex. It means there exists at least one path between every
pair of vertices therefore, it a connected graph.

14
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Definition 2.8. DISCONNECTED GRAPH

A disconnected graph is a graph in which any path does not exist
between every pair of vertices.

EXAMPLE:

The above graph consists of two independent components which are
disconnected. Since it is not possible to visit from the vertices of one
component to the vertices of other components, it is a disconnected
graph.

Definition 2.9. REGULAR GRAPH

A regular graph is a graph in which degree of all the vertices is
same.
If the degree of all the vertices is k, then it is called k − regulargraph.

EXAMPLE:

In the above example, all the vertices have degree 2. Therefore they
are called 2−Regulargraph.
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CHAPTER 2. TYPES AND PROPERTIES OF GRAPHS

Definition 2.10. CYCLIC GRAPH

A graph with n vertices (where n >= 3) and n edges forming a cycle
of n with all its edges is known as cycle graph.
In the cycle graph, degree of each vertex is 2.

A graph containing at least one cycle in it is known as a cyclic
graph.

EXAMPLE:

In the above example, all the vertices have degree 2. Therefore they
all are cyclic graphs.

The above graph contains two cycles in it and therefore it is a cyclic
graph.

Definition 2.11. ACYCLIC GRAPH

A graph which does not contain any cycle in it is called as an
acyclic graph.
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CHAPTER 2. TYPES AND PROPERTIES OF GRAPHS

EXAMPLE:

Definition 2.12. BIPARTITE GRAPH

A bipartite graph is a graph in which the vertex set can be parti-
tioned into two sets such that edges only go between sets, not within
them.
A graph G(V,E) is called bipartite graph if its vertex-set V (G) can be
decomposed into two non-empty disjoint subsets V1(G) and V2(G) in
such a way that each edge e ∈ E(G) has its one last joint in V1(G) and
other last point in V2(G).
The partition V = V 1 ∪ V 2 is known as bipartition of G.

EXAMPLE 1:

17
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EXAMPLE 2:

Definition 2.13. COMPLETE BIPARTITE GRAPH

A complete bipartite graph is a bipartite graph in which each ver-
tex in the first set is joined to each vertex in the second set by exactly
one edge.
A complete bipartite graph is a bipartite graph which is complete.

CompleteBipartiteGraph = BipartiteGraph+ CompleteGraph (2.1)

EXAMPLE:

The above graph is known as K4,3

18
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Definition 2.14. STAR GRAPH

A star graph is a complete bipartite graph in which n − 1 vertices
have degree 1 and a single vertex has degree (n − 1). This exactly
looks like a star where (n− 1) vertices are connected to a single cen-
tral vertex.
A star graph with n vertices is denoted by Sn.

EXAMPLE:

In the above example, out of n vertices, all the (n − 1) vertices are
connected to a single vertex. Hence, it is a star graph.

Definition 2.15. WEIGHTED GRAPH

A weighted graph is a graph whose edges have been labeled with
some weights or numbers.
The length of a path in a weighted graph is the sum of the weights of
all the edges in the path.

EXAMPLE:

19



CHAPTER 2. TYPES AND PROPERTIES OF GRAPHS

In the above graph, if the path chosen is a→ b→ c→ d→ e→ g then
the length of the path is :

5 + 4 + 5 + 6 + 5 = 25.

Definition 2.16. MULTI GRAPH

A graph in which there are multiple edges between any pair of ver-
tices or there are edges from a vertex to itself (loop) is called a multi -
graph.

EXAMPLE:

In the above graph, vertex-set B and C are connected with two edges.
Similarly, vertex sets E and F are connected with 3 edges. Therefore,
it is a multi graph.

Definition 2.17. PLANAR GRAPH

A planar graph is a graph that we can draw in a plane in such
a way that no two edges of it cross each other except at a vertex to
which they are incident,
i.e., A planar graph is a graph that can be embedded in the plane
such that its edges intersect only at their endpoints.

20
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EXAMPLE:

The above graph may not seem to be planar because it has edges
crossing each other. But we can redraw the above graph.

The three plane drawings of the above graph are:

The above three graphs do not consist of two edges crossing each
other and therefore, all the above graphs are planar.

2.2 PROPERTIES OF GRAPHS

2.2.1 DISTANCE BETWEEN TWO VERTICES
Distance is basically the number of edges in a shortest path between vertex X and
vertex Y . If there are many paths connecting two vertices, then the shortest path
is considered as the distance between the two vertices.
Distance between any two vertices X and Y is denoted by d(X, Y ).
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EXAMPLE:

Suppose, we want to find the distance between vertex B and D. Then, first of all,
we have to find the shortest path between vertex B and D.
There are many paths from vertex B to vertex D:

• B→ C→ A→ D. Here, length = 3

• B→ D. Length = 1 (Shortest Path)

• B→ A→ D. Length = 2

• B→ C→ D. Length = 2

• B→ C→ A→ D. Length = 3

Hence, the minimum distance between vertex B and vertex D is 1.

2.2.2 ECCENTRICITY OF A VERTEX
Eccentricity of a vertex is the maximum distance between a vertex to all other
vertices. It is denoted by e(V ).
For a disconnected graph, all vertices are defined to have infinite eccentricity.
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2.2.3 RADIUS OF CONNECTED GRAPHS
The radius of a connected graph is the minimum eccentricity from all the vertices.
In other words, the minimum among all the distances between a vertex to all other
vertices is called as the radius of the graph.
It is denoted by r(G).

2.2.4 DIAMETER OF A GRAPH
Diameter of a graph is the maximum eccentricity from all the vertices. In other
words, the maximum among all the distances between a vertex to all other vertices
is considered as the diameter of the graph G.
It is denoted by d(G).

2.2.5 CENTRAL POINT
If the eccentricity of the graph is equal to its radius, then it is known as central
point of the graph,

Or,

If r(V ) = e(V ), then V is the central point of the graph G.

2.2.6 CENTRE OF A GRAPH
The set of all the central point of the graph is known as centre of the graph.

2.2.7 EXAMPLE
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2.2.8 CIRCUMFERENCE OF A GRAPH
The total number of edges in the longest cycle of graph G is known as the circum-
ference of G.

2.2.9 GIRTH
The total number of edges in the shortest cycle of graph G is known as girth.
It is denoted by g(G).

2.2.10 EXAMPLE

For the above graph,

• Order = 9.

• Size (number of edges) = 18.

• Radius = 2.

• Circumference = 9.

• Girth = 3.
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CHAPTER 3

THE FIRST THEOREM OF
GRAPH THEORY

3.1 THE FIRST THEOREM
Theorem 3.1.1. For any graph G with e edges and n vertices: v1, v2, ..., vn,

n∑
i=1

d(vi) = 2e (3.1)

ie, In a graph G, the sum of the degrees of the vertices is equal to
twice the number of edges.

Proof.

Each edge, since it has two end vertices, contributes precisely 2 to the sum
of the degrees, i.e, when the degrees of the vertices are summed, each edge is
counted twice.
□
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3.1.1 EXAMPLE

In the above graph, we have,

1. d(v1) = 3

2. d(v2) = 4

3. d(v3) = 3

4. d(v4) = 3

5. d(v5) = 1

6. Number of edges, e = 7.

Then,
d(v1) + d(v2) + d(v3) + d(v4) + d(v5) = 14 = 2× e (3.2)

i.e.,
5∑

i=1

d(vi) = 2× 7 = 14 (3.3)

Remark 1. A vertex of a graph is called odd or even depending on
whether its degree is odd or even.
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EXAMPLE:

Here, the vertex degrees are:

1. d(1) = 3

2. d(2) = 3

3. d(3) = 3

4. d(4) = 3

Hence, all the vertices here are called odd vertices.

Corollary 3.1.1.1. In a graph G, there is an even number of odd
vertices.

Proof. Let W be the set of odd vertices of G and let U be the set of even
vertices of G.
Then, for each u ∈ U , d(u) is even.
Also, ∑

u∈U

d(u),

being a sum of even numbers, is even.
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However, by the previous theorem where V is the vertex set of G and e is the
number of its edges, ∑

u∈U

d(u) +
∑
w∈W

d(w) =
∑
v∈V

d(v) = 2e. (3.4)

Thus, ∑
w∈W

d(w) = 2e−
∑
u∈U

d(u), (3.5)

is even (being the difference of two even numbers).

As all the terms in: ∑
w∈W

d(w),

are odd and their sum is even, there must be an even number of them (because the
sum of an odd number of odd numbers is odd).
□

EXAMPLE:

In the above graph, d(v1) = 4, d(v2) = 3, d(v3) = 3, d(v4) = 3 and d(v5) = 3.
Hence, out of the 5 vertices, v2, v3, v4 and v5 have odd degrees, i.e., there is an
even number (4) of odd vertices.
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CHAPTER 4

APPLICATIONS OF GRAPH
THEORY

Graph Theory is used in vast area of science and technologies.

1. COMPUTER SCIENCE
In computer science, graph theory is used for the study of algorithms like:

• Dijkstra’s Algorithm : Dijkstra’s algorithm allows us to find the
shortest path between any two vertices of a graph. This algorithm
helps in finding the shortest paths between nodes in a graph, which
may represent, for example, road networks.
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CHAPTER 4. APPLICATIONS OF GRAPH THEORY

• Prim’s Algorithm : Prim’s Algorithm is a greedy algorithm that is
used to find the subset of edges that includes every vertex of the graph
such that the sum of the weights of the edges can be minimized for a
weighted undirected graph.

• Kruskal’s Algorithm: Kruskal’s Algorithm is used to discover the
shortest path between two points in a connected weighted graph.

Moreover, graphs are used:

• To define the flow of computation.

• To represent networks of communication.

• To represent data organization.

• To find shortest path in road or a network.

• In Google Maps, various locations are represented as vertices or nodes
and the roads are represented as edges and graph theory is used to find
the shortest path between two nodes.

2. ELECTRICAL ENGINEERING

In Electrical Engineering, graph theory is used in designing of circuit con-
nections. These circuit connections are named as topologies. Some topolo-
gies are series, bridge, star and parallel topologies.

EXAMPLE:
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3. LINGUISTICS

• In linguistics, graphs are mostly used for parsing of a language tree
and grammar of a language tree.

• Semantics networks are used within lexical semantics, especially as
applied to computers, modeling word meaning is easier when a given
word is understood in terms of related words.

• Methods in phonology (e.g. theory of optimality, which uses lattice
graphs) and morphology (e.g. morphology of finite - state, using finite-
state transducers) are common in the analysis of language as a graph.

4. PHYSICS AND CHEMISTRY

• In physics and chemistry, graph theory is used to study molecules.

• The 3D structure of complicated simulated atomic structures can be
studied quantitatively by gathering statistics on graph-theoretic prop-
erties related to the topology of the atoms.

• Statistical physics also uses graphs. In this field graphs can represent
local connections between interacting parts of a system, as well as the
dynamics of a physical process on such systems.

• Graphs are also used to express the micro-scale channels of porous
media, in which the vertices represent the pores and the edges repre-
sent the smaller channels connecting the pores.

• Graph is also helpful in constructing the molecular structure as well
as lattice of the molecule. It also helps us to show the bond relation in
between atoms and molecules, also help in comparing structure of one
molecule to other.

5. COMPUTER NETWORK

• In computer network, the relationships among interconnected comput-
ers within the network, follow the principles of graph theory.

• Graph theory is widely used in modeling and routing in networks.

• Graph theory is also used in network security.
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6. SOCIAL SCIENCES

• Graph theory is also used in sociology. For example, to explore rumor
spreading, or to measure actors’ prestige notably through the use of
social network analysis software.

• Acquaintanceship and friendship graphs describe whether people know
each other or not.

• In influence graphs model, certain people can influence the behavior
of others.

• In collaboration graphs model to check whether two people work to-
gether in a particular way, such as acting in a movie together.

7. BIOLOGY

• Nodes in biological networks represent bio-molecules such as genes,
proteins or metabolites, and edges connecting these nodes indicate
functional, physical or chemical interactions between the correspond-
ing bio-molecules.

• Graph theory is used in transcriptional regulation networks.
• It is also used in Metabolic networks.
• In PPI (Protein - Protein interaction) networks graph theory is also

useful.
• Characterizing drug - drug target relationships.

8. MATHEMATICS
In mathematics, operational research is the important field. Graph theory
provides many useful applications in operational research like:

• Minimum cost path.
• A scheduling problem.

9. MISCELLANEOUS
Graphs are used to represent the routes between the cities. With the help of
tree that is a type of graph, we can create hierarchical ordered information
such as family tree.
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CONCLUSION

Graph theory has delivered important scientific discoveries, such as improved un-
derstanding of breakdown of electricity distribution systems or the propagation of
infections in social networks, till date.

Graph theory also provides a remarkably simple way to characterize the com-
plexity of ecological networks. Indices such as connectance, degree distribution
or network topology serve as basic measurements to describe their structure. Such
indices facilitate comparison between different systems and revealing commonali-
ties and variations. Nowadays, the relatively important number of network studies
leads to a myriads of ways to sample, analyze and interpret them.

Graph theory is an exceptionally rich area for programmers and designers. Graphs
can be used to solve some very complex problems, such as least cost routing, map-
ping, program analysis, and so on. Network devices, such as routers and switches,
use graphs to calculate optimal routing for traffic.

Graph theory is rapidly moving into the mainstream of mathematics mainly be-
cause of its applications in diverse fields which include biochemistry (genomics),
electrical engineering (communications networks and coding theory), computer
science (algorithms and computations) and operations research (scheduling).

Hence, studying graphs through a framework provides answers to many arrange-
ment, networking, optimization, matching and operational problems. Graphs can
be used to model many types of relations and processes in physical, biological,
social and information systems, and has a wide range of useful applications.
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INTRODUCTION

In mathematics, graph theory is the study of graphs, which are mathematical struc-
tures used to model pairwise relations between objects. Graph theory is a delight-
ful playground for the exploration of proof techniques in Discrete Mathematics.
The results of graph theory have applications in many areas of the computing,
social and natural sciences. One of the beauties of graph theory is that it depends
very little on other branches of mathematics. The subject of graph theory had its
beginnings in recreational math problems but it has grown into a significant area
of mathematical research, with applications in chemistry, operations research, so-
cial sciences, and computer science.

Graph Theory can model and study many real-world problems and is applied in a
wide range of disciplines. In computer science, graph theory is used to model net-
works and communications as seen in the case of Google search, Google Maps and
social media. Furthermore, graph theory is used in chemistry to model molecules
and in biology to study genomes. It is even used in linguistics and social sciences.
Using graph theory in Machine Learning and neural network is also one of the
new trends.

The history of graph theory may be specifically traced to 1735, when the Swiss
mathematician Leonhard Euler solved the Königsberg bridge problem. The Königs-
berg bridge problem was an old puzzle concerning the possibility of finding a
path over every one of seven bridges that span a forked river flowing past an is-
land—but without crossing any bridge twice. Euler argued that no such path exists
since in Königsberg, the four land masses were connected by an odd number of
bridges, it was impossible to draw the desired route. His proof involved only ref-
erences to the physical arrangement of the bridges, but essentially he proved the
first theorem in graph theory.
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CHAPTER 1

BASIC CONCEPTS IN GRAPH
THEORY

1.1 GRAPH
A graph G = (V(G),E(G)) consists of two finite sets:

i The vertex set of the graph, denoted by V(G) or V, which is a non-empty set
of elements called vertices,

ii The edge set of the graph, denoted by E(G) or E, which is a possible empty
set of elements called edges,

such that each edge e in E is assigned an unordered pair of vertices (u,v) called
the end vertices of e.

Vertices of a graph are also known as nodes or points while edges are also called
links or lines.

1.1.1 EXAMPLE
Let G = (V,E) where V = {a, b, c, d, e}, E = {e1, e2, e3, e4, e5, e6, e7, e8}, and the
ends of edges are given by:

e1 ←→ (a, b) e2 ←→ (b, c) e3 ←→ (c, c) e4 ←→ (c, d) e5 ←→ (b, d)
e6 ←→ (d, e) e7 ←→ (b, e) e8 ←→ (b, e).
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CHAPTER 1. BASIC CONCEPTS IN GRAPH THEORY

Then, G can be represented diagrammatically as:

1.2 SUBGRAPHS
Let H be a graph with vertex set V (H) and edge set E(H) and similarly, let G
be a graph with vertex set V (G) and edge set E(G). Then we say that H is a
subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). In such a case, we also say
that G is a supergraph of H .

In the above example, G1 is a subgraph of both G2 and G3. But, G3 is not a
subgraph of G2.

1.2.1 PROPER SUBGRAPH
If H is a subgraph of G then we write: H ⊆ G. When H ⊆ G but H ̸= G, i.e.,
V (H) ̸= V (G) or E(H) ̸= E(G), then H is called a proper subgraph of G.
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1.2.2 EXAMPLE

1.2.3 SPANNING SUBGRAPH
A spanning subgraph of a graph G is a subgraph H with V (H) = V (G), i.e., H
and G have exactly the same vertex set.

1.2.4 EXAMPLE

4
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1.3 SOME DEFINITIONS
Definition 1.1. LOOP

An edge for which two end vertices are the same is called a loop.

Definition 1.2. PARALLEL EDGES

If two or more edges of G have the same end vertices, these edges
are called multiple or parallel edges.

Definition 1.3. INCIDENT EDGE

Any edge is said to be incident to the vertices connected by the
edge.

Definition 1.4. ADJACENT VERTEX

A vertex is said to be adjacent to other vertices if it has an edge
connecting it to the vertices.

Definition 1.5. ISOLATED VERTEX

Any vertex without any edges coming in or out of it is called an
isolated vertex.

Definition 1.6. VERTEX DEGREES

Let v be a vertex of a graph G. The degree d(v) of v is the number
of edges of G incident with v, counting each loop twice, i.e., it is the
number of times v is an end vertex of an edge.

Definition 1.7. BIPARTITION

Let G be a graph. If the vertex set V of G can be partitioned into
two non-empty subsets X and Y in such a way that each edge of G
has one end in X and one end in Y , then G is called bipartite.
The partition V is called a bipartition of G.
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1.4 PATHS, CYCLES AND TREES

1.4.1 WALK
A walk in a graph G is a finite sequence:

W = v0e1v1e2v2...vk−1ekvk (1.1)

whose terms are alternatively vertices and edges such that, for 1 ≤ i ≤ k, the
edge ei has ends vi−1 and vi. Thus, each edge ei is immediately preceded and
succeeded by the two vertices with which it is incident.

The walk W in (2.1) is a v0 − vk walk, or, a walk from v0 to vk. The vertex
v0 is called the origin of the walk while vk is called the terminus of W . (v0 and
vk need not be distinct.)
The vertices v1, v2,...,vk−1, in a walk W are called its internal vertices. The inte-
ger k, the number of edges in the walk, is called the length of W .

1.4.2 TRIVIAL WALK
A trivial walk is a walk containing no edges.
Thus, for any vertex v of a graph G,

W = v

gives a trivial walk. It has length 0.

1.4.3 CLOSED AND OPEN WALK
For two given vertices u and v of a graph G, a u − v walk is said to be closed or
open depending on whether u = v or u ̸= v.

1.4.4 TRAIL
If the edges e1, e2, ..., ek of the walk W = v0 e1 v1 e2 v2...ekvk are distinct, W is
called a trail.

6
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1.4.5 PATH
If the vertices v0, v1, ..., vk of the walk W = v0 e1 v1 e2 v2...ek vk are distinct then
W is called a path.
A path with n vertices is sometimes denoted by Pn and it has length n− 1.

1.4.6 EXAMPLE

Let the above graph G be such that the walks W1, W2, W3, W4 be defined as:

• W1 = v1 e1 v2 e5 v3 e10 v3 e5 v2 e3 v5

• W2 = v1 e1 v2 e1 v1 e1 v2

• W3 = v1 v5 v2 v4 v3 v1

• W4 = v2 v4 v3 v5 v1

Here, the length of:

1. W1 = 5

2. W2 = 3

3. W3 = 5

4. W4 = 4.

7



CHAPTER 1. BASIC CONCEPTS IN GRAPH THEORY

Then,

1. W1, W2 and W4 are open walks while W3 is a closed walk.

2. W3, W4 are trails but W1 and W2 aren’t.

3. W4 is a path but W1, W2 and W3 aren’t.

Theorem 1.4.1. Given any two vertices u and v of a graph G, every
u− v walk contains a u− v path,
i.e., given any walk,

W = u e1 v1...vk−1 ek v

then, after some deletion of vertices and edges if necessary, we can
find a sub-sequence P of W which is a u− v path.

Proof. If u = v, i.e.,if W is closed, then the trivial path P = u will do.

Now suppose u ̸= v,i.e.,W is open and let the vertices of W be given, in order,
by:

u = u0, u1, u2, ..., uk−1, uk = v.

If none of the vertices of G occurs in W more than once, then W is already a u−v
path and so we are finished by taking P = W .

So now suppose that there are vertices of G that occur in W twice or more.
Then there are distinct i, j with i < j, say, such that ui = uj . If the terms
ui, ui+1, ..., uj−1 (and the preceding edges) are deleted from W then we obtain a
u− v walk W1 having fewer vertices than W . If there is no repetition of vertices
in W1, then W1 is a u− v path and setting P = W1 finishes the proof.
If this is not the case, then we repeat the above deletion procedure until finally
arriving at a u− v walk that is a path, as required. □

8
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1.4.7 CYCLE
A non-trivial closed trail in a graph G is called a cycle if its origin and internal
vertices are distinct i.e.,
A cycle in a graph is a non-empty trail in which only the first and last vertices are
equal.

A cycle of length k is called a k − cycle. A k − cycle is called odd or even
depending on whether k is odd or even.

A 3−cycle is often called a triangle. An n−cycle, i.e., a cycle with n vertices,
will sometimes be denoted by Cn.

EXAMPLE 1:

In the above example,

1. C = v1 v2 v3 v4 v1 is a 4-cycle.

2. T = v1 v2 v5 v3 v4 v5 v1 in a non-trivial closed trail which is not a cycle since
v5 occurs twice as an internal vertex.

3. C1 = v1 v2 v5 v1 is a triangle.

EXAMPLE 2:

Here, 0 → 1 → 2 → 3 → 0 is a 4-cycle but 0 → 1 → 2 → 4 → 2 → 3 → 0 is
not a cycle since the vertex 2, an internal vertex, occurs twice.

9
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1.4.8 TREES
A graph G is called acyclic if it contains no cycles.
A graph G is called a tree if it is a connected acyclic graph, i.e., A tree is an undi-
rected graph in which any two vertices are connected by exactly one path.

EXAMPLE 1:

The above graph is an undirected connected acyclic graph and thus, a tree.

EXAMPLE 2:

The above example shows the representation of the first four hydrocarbons as
trees.

10



CHAPTER 2

TYPES AND PROPERTIES OF
GRAPHS

2.1 TYPES OF GRAPHS
Definition 2.1. NULL GRAPH

A null graph is a graph in which there are no edges between its
vertices. A null graph is also called empty graph.

EXAMPLE:

In all the above graphs, there are no edges between the vertices.

Definition 2.2. TRIVIAL GRAPH

A trivial graph is the graph which has only one vertex.

11
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EXAMPLE:

In the above graph, there is only one vertex ’v’ without any edge.
Therefore, it is a trivial graph.

Definition 2.3. SIMPLE GRAPH

A simple graph is the undirected graph with no parallel edges and
no loops. A simple graph which has n vertices, the degree of every
vertex is at most n− 1.

EXAMPLE:

Definition 2.4. UNDIRECTED GRAPH

An undirected graph is a graph whose edges are not directed. The
relations between pairs of vertices in an undirected graph are sym-
metric, so that each edge has no directional character. They only
represent whether or not a relationship exists between two vertices.
Thus, all the edges in an undirected graph are bidirectional.

12
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EXAMPLE:

Definition 2.5. DIRECTED GRAPH

A directed graph is a graph in which the edges are directed by ar-
rows.
Directed graphs are also known as digraphs.

EXAMPLE:

In the above graph, each edge is directed by the arrow. A directed
edge has an arrow from A to B means A is related to B but B is not
related to A.

13
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Definition 2.6. COMPLETE GRAPH

A graph in which every pair of vertices is joined by exactly one
edge is called complete graph. It contains all possible edges.
A complete graph with n vertices contains exactly

(
n
2

)
edges.

EXAMPLE:

In the above example, since each vertex in the graph is connected with
all the remaining vertices through exactly one edge, both are complete
graphs.

Definition 2.7. CONNECTED GRAPH

A connected graph is a graph in which we can visit from any one
vertex to any other vertex. In a connected graph, at least one edge or
path exists between every pair of vertices.

EXAMPLE:

In the above example, we can traverse from any one vertex to any
other vertex. It means there exists at least one path between every
pair of vertices therefore, it a connected graph.

14
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Definition 2.8. DISCONNECTED GRAPH

A disconnected graph is a graph in which any path does not exist
between every pair of vertices.

EXAMPLE:

The above graph consists of two independent components which are
disconnected. Since it is not possible to visit from the vertices of one
component to the vertices of other components, it is a disconnected
graph.

Definition 2.9. REGULAR GRAPH

A regular graph is a graph in which degree of all the vertices is
same.
If the degree of all the vertices is k, then it is called k − regulargraph.

EXAMPLE:

In the above example, all the vertices have degree 2. Therefore they
are called 2−Regulargraph.
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Definition 2.10. CYCLIC GRAPH

A graph with n vertices (where n >= 3) and n edges forming a cycle
of n with all its edges is known as cycle graph.
In the cycle graph, degree of each vertex is 2.

A graph containing at least one cycle in it is known as a cyclic
graph.

EXAMPLE:

In the above example, all the vertices have degree 2. Therefore they
all are cyclic graphs.

The above graph contains two cycles in it and therefore it is a cyclic
graph.

Definition 2.11. ACYCLIC GRAPH

A graph which does not contain any cycle in it is called as an
acyclic graph.

16
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EXAMPLE:

Definition 2.12. BIPARTITE GRAPH

A bipartite graph is a graph in which the vertex set can be parti-
tioned into two sets such that edges only go between sets, not within
them.
A graph G(V,E) is called bipartite graph if its vertex-set V (G) can be
decomposed into two non-empty disjoint subsets V1(G) and V2(G) in
such a way that each edge e ∈ E(G) has its one last joint in V1(G) and
other last point in V2(G).
The partition V = V 1 ∪ V 2 is known as bipartition of G.

EXAMPLE 1:

17
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EXAMPLE 2:

Definition 2.13. COMPLETE BIPARTITE GRAPH

A complete bipartite graph is a bipartite graph in which each ver-
tex in the first set is joined to each vertex in the second set by exactly
one edge.
A complete bipartite graph is a bipartite graph which is complete.

CompleteBipartiteGraph = BipartiteGraph+ CompleteGraph (2.1)

EXAMPLE:

The above graph is known as K4,3

18
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Definition 2.14. STAR GRAPH

A star graph is a complete bipartite graph in which n − 1 vertices
have degree 1 and a single vertex has degree (n − 1). This exactly
looks like a star where (n− 1) vertices are connected to a single cen-
tral vertex.
A star graph with n vertices is denoted by Sn.

EXAMPLE:

In the above example, out of n vertices, all the (n − 1) vertices are
connected to a single vertex. Hence, it is a star graph.

Definition 2.15. WEIGHTED GRAPH

A weighted graph is a graph whose edges have been labeled with
some weights or numbers.
The length of a path in a weighted graph is the sum of the weights of
all the edges in the path.

EXAMPLE:

19
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In the above graph, if the path chosen is a→ b→ c→ d→ e→ g then
the length of the path is :

5 + 4 + 5 + 6 + 5 = 25.

Definition 2.16. MULTI GRAPH

A graph in which there are multiple edges between any pair of ver-
tices or there are edges from a vertex to itself (loop) is called a multi -
graph.

EXAMPLE:

In the above graph, vertex-set B and C are connected with two edges.
Similarly, vertex sets E and F are connected with 3 edges. Therefore,
it is a multi graph.

Definition 2.17. PLANAR GRAPH

A planar graph is a graph that we can draw in a plane in such
a way that no two edges of it cross each other except at a vertex to
which they are incident,
i.e., A planar graph is a graph that can be embedded in the plane
such that its edges intersect only at their endpoints.

20



CHAPTER 2. TYPES AND PROPERTIES OF GRAPHS

EXAMPLE:

The above graph may not seem to be planar because it has edges
crossing each other. But we can redraw the above graph.

The three plane drawings of the above graph are:

The above three graphs do not consist of two edges crossing each
other and therefore, all the above graphs are planar.

2.2 PROPERTIES OF GRAPHS

2.2.1 DISTANCE BETWEEN TWO VERTICES
Distance is basically the number of edges in a shortest path between vertex X and
vertex Y . If there are many paths connecting two vertices, then the shortest path
is considered as the distance between the two vertices.
Distance between any two vertices X and Y is denoted by d(X, Y ).

21
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EXAMPLE:

Suppose, we want to find the distance between vertex B and D. Then, first of all,
we have to find the shortest path between vertex B and D.
There are many paths from vertex B to vertex D:

• B→ C→ A→ D. Here, length = 3

• B→ D. Length = 1 (Shortest Path)

• B→ A→ D. Length = 2

• B→ C→ D. Length = 2

• B→ C→ A→ D. Length = 3

Hence, the minimum distance between vertex B and vertex D is 1.

2.2.2 ECCENTRICITY OF A VERTEX
Eccentricity of a vertex is the maximum distance between a vertex to all other
vertices. It is denoted by e(V ).
For a disconnected graph, all vertices are defined to have infinite eccentricity.

22
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2.2.3 RADIUS OF CONNECTED GRAPHS
The radius of a connected graph is the minimum eccentricity from all the vertices.
In other words, the minimum among all the distances between a vertex to all other
vertices is called as the radius of the graph.
It is denoted by r(G).

2.2.4 DIAMETER OF A GRAPH
Diameter of a graph is the maximum eccentricity from all the vertices. In other
words, the maximum among all the distances between a vertex to all other vertices
is considered as the diameter of the graph G.
It is denoted by d(G).

2.2.5 CENTRAL POINT
If the eccentricity of the graph is equal to its radius, then it is known as central
point of the graph,

Or,

If r(V ) = e(V ), then V is the central point of the graph G.

2.2.6 CENTRE OF A GRAPH
The set of all the central point of the graph is known as centre of the graph.

2.2.7 EXAMPLE

23
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2.2.8 CIRCUMFERENCE OF A GRAPH
The total number of edges in the longest cycle of graph G is known as the circum-
ference of G.

2.2.9 GIRTH
The total number of edges in the shortest cycle of graph G is known as girth.
It is denoted by g(G).

2.2.10 EXAMPLE

For the above graph,

• Order = 9.

• Size (number of edges) = 18.

• Radius = 2.

• Circumference = 9.

• Girth = 3.
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CHAPTER 3

THE FIRST THEOREM OF
GRAPH THEORY

3.1 THE FIRST THEOREM
Theorem 3.1.1. For any graph G with e edges and n vertices: v1, v2, ..., vn,

n∑
i=1

d(vi) = 2e (3.1)

ie, In a graph G, the sum of the degrees of the vertices is equal to
twice the number of edges.

Proof.

Each edge, since it has two end vertices, contributes precisely 2 to the sum
of the degrees, i.e, when the degrees of the vertices are summed, each edge is
counted twice.
□
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3.1.1 EXAMPLE

In the above graph, we have,

1. d(v1) = 3

2. d(v2) = 4

3. d(v3) = 3

4. d(v4) = 3

5. d(v5) = 1

6. Number of edges, e = 7.

Then,
d(v1) + d(v2) + d(v3) + d(v4) + d(v5) = 14 = 2× e (3.2)

i.e.,
5∑

i=1

d(vi) = 2× 7 = 14 (3.3)

Remark 1. A vertex of a graph is called odd or even depending on
whether its degree is odd or even.
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EXAMPLE:

Here, the vertex degrees are:

1. d(1) = 3

2. d(2) = 3

3. d(3) = 3

4. d(4) = 3

Hence, all the vertices here are called odd vertices.

Corollary 3.1.1.1. In a graph G, there is an even number of odd
vertices.

Proof. Let W be the set of odd vertices of G and let U be the set of even
vertices of G.
Then, for each u ∈ U , d(u) is even.
Also, ∑

u∈U

d(u),

being a sum of even numbers, is even.
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However, by the previous theorem where V is the vertex set of G and e is the
number of its edges, ∑

u∈U

d(u) +
∑
w∈W

d(w) =
∑
v∈V

d(v) = 2e. (3.4)

Thus, ∑
w∈W

d(w) = 2e−
∑
u∈U

d(u), (3.5)

is even (being the difference of two even numbers).

As all the terms in: ∑
w∈W

d(w),

are odd and their sum is even, there must be an even number of them (because the
sum of an odd number of odd numbers is odd).
□

EXAMPLE:

In the above graph, d(v1) = 4, d(v2) = 3, d(v3) = 3, d(v4) = 3 and d(v5) = 3.
Hence, out of the 5 vertices, v2, v3, v4 and v5 have odd degrees, i.e., there is an
even number (4) of odd vertices.
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CHAPTER 4

APPLICATIONS OF GRAPH
THEORY

Graph Theory is used in vast area of science and technologies.

1. COMPUTER SCIENCE
In computer science, graph theory is used for the study of algorithms like:

• Dijkstra’s Algorithm : Dijkstra’s algorithm allows us to find the
shortest path between any two vertices of a graph. This algorithm
helps in finding the shortest paths between nodes in a graph, which
may represent, for example, road networks.

29
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• Prim’s Algorithm : Prim’s Algorithm is a greedy algorithm that is
used to find the subset of edges that includes every vertex of the graph
such that the sum of the weights of the edges can be minimized for a
weighted undirected graph.

• Kruskal’s Algorithm: Kruskal’s Algorithm is used to discover the
shortest path between two points in a connected weighted graph.

Moreover, graphs are used:

• To define the flow of computation.

• To represent networks of communication.

• To represent data organization.

• To find shortest path in road or a network.

• In Google Maps, various locations are represented as vertices or nodes
and the roads are represented as edges and graph theory is used to find
the shortest path between two nodes.

2. ELECTRICAL ENGINEERING

In Electrical Engineering, graph theory is used in designing of circuit con-
nections. These circuit connections are named as topologies. Some topolo-
gies are series, bridge, star and parallel topologies.

EXAMPLE:
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3. LINGUISTICS

• In linguistics, graphs are mostly used for parsing of a language tree
and grammar of a language tree.

• Semantics networks are used within lexical semantics, especially as
applied to computers, modeling word meaning is easier when a given
word is understood in terms of related words.

• Methods in phonology (e.g. theory of optimality, which uses lattice
graphs) and morphology (e.g. morphology of finite - state, using finite-
state transducers) are common in the analysis of language as a graph.

4. PHYSICS AND CHEMISTRY

• In physics and chemistry, graph theory is used to study molecules.

• The 3D structure of complicated simulated atomic structures can be
studied quantitatively by gathering statistics on graph-theoretic prop-
erties related to the topology of the atoms.

• Statistical physics also uses graphs. In this field graphs can represent
local connections between interacting parts of a system, as well as the
dynamics of a physical process on such systems.

• Graphs are also used to express the micro-scale channels of porous
media, in which the vertices represent the pores and the edges repre-
sent the smaller channels connecting the pores.

• Graph is also helpful in constructing the molecular structure as well
as lattice of the molecule. It also helps us to show the bond relation in
between atoms and molecules, also help in comparing structure of one
molecule to other.

5. COMPUTER NETWORK

• In computer network, the relationships among interconnected comput-
ers within the network, follow the principles of graph theory.

• Graph theory is widely used in modeling and routing in networks.

• Graph theory is also used in network security.
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CHAPTER 4. APPLICATIONS OF GRAPH THEORY

6. SOCIAL SCIENCES

• Graph theory is also used in sociology. For example, to explore rumor
spreading, or to measure actors’ prestige notably through the use of
social network analysis software.

• Acquaintanceship and friendship graphs describe whether people know
each other or not.

• In influence graphs model, certain people can influence the behavior
of others.

• In collaboration graphs model to check whether two people work to-
gether in a particular way, such as acting in a movie together.

7. BIOLOGY

• Nodes in biological networks represent bio-molecules such as genes,
proteins or metabolites, and edges connecting these nodes indicate
functional, physical or chemical interactions between the correspond-
ing bio-molecules.

• Graph theory is used in transcriptional regulation networks.
• It is also used in Metabolic networks.
• In PPI (Protein - Protein interaction) networks graph theory is also

useful.
• Characterizing drug - drug target relationships.

8. MATHEMATICS
In mathematics, operational research is the important field. Graph theory
provides many useful applications in operational research like:

• Minimum cost path.
• A scheduling problem.

9. MISCELLANEOUS
Graphs are used to represent the routes between the cities. With the help of
tree that is a type of graph, we can create hierarchical ordered information
such as family tree.
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CONCLUSION

Graph theory has delivered important scientific discoveries, such as improved un-
derstanding of breakdown of electricity distribution systems or the propagation of
infections in social networks, till date.

Graph theory also provides a remarkably simple way to characterize the com-
plexity of ecological networks. Indices such as connectance, degree distribution
or network topology serve as basic measurements to describe their structure. Such
indices facilitate comparison between different systems and revealing commonali-
ties and variations. Nowadays, the relatively important number of network studies
leads to a myriads of ways to sample, analyze and interpret them.

Graph theory is an exceptionally rich area for programmers and designers. Graphs
can be used to solve some very complex problems, such as least cost routing, map-
ping, program analysis, and so on. Network devices, such as routers and switches,
use graphs to calculate optimal routing for traffic.

Graph theory is rapidly moving into the mainstream of mathematics mainly be-
cause of its applications in diverse fields which include biochemistry (genomics),
electrical engineering (communications networks and coding theory), computer
science (algorithms and computations) and operations research (scheduling).

Hence, studying graphs through a framework provides answers to many arrange-
ment, networking, optimization, matching and operational problems. Graphs can
be used to model many types of relations and processes in physical, biological,
social and information systems, and has a wide range of useful applications.
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INTRODUCTION

Coding theory is the study of the properties of codes and their re-
spective fitness for specific applications. Codes are used for data
compression, cryptography, error detection and correction, data
transmission and data storage. Codes are studied by various scien-
tific disciplines—such as information theory, electrical engineering,
mathematics, linguistics, and computer science— for the purpose
of designing efficient and reliable data transmission methods. This
typically involves the removal of redundancy and the correction or
detection of errors in the transmitted data.

Coding theory, sometimes called algebraic coding theory, deals
with the design of error-correcting codes for the reliable transmis-
sion of information across noisy channels. It makes use of classical
and modern algebraic techniques involving finite fields, group the-
ory, and polynomial algebra. It has connections with other areas of
discrete mathematics, especially number theory and the theory of
experimental designs.

The history of coding theory is in 1948, Claude Shannon pub-
lished "A Mathematical Theory of Communication", an article in two
parts in the July and October issues of the Bell System Technical
Journal. This work focuses on the problem of how best to encode
the information a sender wants to transmit. In this fundamen-
tal work he used tools in probability theory, developed by Norbert
Wiener, which were in their nascent stages of being applied to com-
munication theory at that time. Shannon developed information
entropy as a measure for the uncertainty in a message while es-
sentially inventing the field of information theory.The binary Golay
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code was developed in 1949. It is an error-correcting code capable
of correcting up to three errors in each 24-bit word, and detect-
ing a fourth.

In first chapter ’Introduction to Coding Theory’ we discussed
about some basic concept of Coding Theory. It includes Basic As-
sumption where some fundamental definition and assumptions are
stated, Information Rate, The Effect of Error Correction and Detec-
tion, Weight and Distance, Maximum Likelihood Decoding, Reliabil-
ity of MLD, Error Detection and Correction. In the second chapter
’Linear Code’ we discuss about linear codes and its properties and
also some theorems. Linear Code is an important concept in Coding
Theory. Second chapter includes Independence, Basis and Dimen-
sion, Matrices, Finding Bases for C, Generating Matrices, Parity
Check Matrices, Equivalent Code, Distance of Linear Codes, Cosets,
MLD of Linear Code.
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PRELIMINARY

Binary Number
A binary number is a number expressed in the basis-2 numerical
system or binary number system, a method of which uses only two
symbols: typically "0" and "1".

Binary Addition
Binary addition is the sum of two or more binary numbers. Binary
addition rules is,
0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0

Probability
Probability is the likelihood that an event will occur and is calcu-
lated by dividing the number of favourable outcomes by the total
number of possible outcomes.

Linear Combination
Let V be a vector space and S is non empty subset of V. A vector x in
V is said to be a linear combination of elements of S if there exist a
finite number of elements y1,y2,.....,yn in S and scalars α1,α2,.....,αn

in F such that x=α1y1+α2y2+......+αnyn
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Span
Let S be a non-empty subset of a vector space V, the set of all linear
combination of S is called Span of S. It is denoted by [S] or Span(S).

Subspace
A subset W of a vector space V over a field F is called a subspace of
V if W is a vector space over F under the operation of addition and
scalar multiplication defined on V.

Subset
A set A is a subset of another set B if all element of the set A are
element of the set B.

Linearly Independent and Dependent
Let S={u1,u2,.....,un} be a subset of a vector space V, α1,α2,.....,αn be
scalars and α1u1+α2u2+......+αnun be a linear combination of S.

The set S={u1,u2,.....,un} is said to be Linearly Independent if
α1u1+α2u2+......+αnun=0 ⇒ α1=α2,.....=αn= 0 (The only solution).

If there exist a non-trivial solution for α1,α2,.....,αn, That is atleast
one αi is not zero. Then the set is called Linearly Dependent.

Dimension
Let β be a basis of a vector space V if the number of vectors in β is
n then the vector space V is called n-dimensional vector space and
written as dim(V)=n.

Elementary Row Operation
The operation that are performed on rows of a matrix.
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Rank
The number ’r’ with the following two properties is called the Rank
of the matrix.

1. There is atleast one non-zero minor of order r.

2. Every minor of order (r+1) is zero or vanish.

Cosets
Coset is subset of mathematical group consisting of all the products
obtained by multiplying fixed element of group by each of elements
of given subgroup, either on right or on left. Cosets are basic tool
in study of groups
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CHAPTER 1

INTRODUCTION TO CODING
THEORY

1.1 Coding Theory
Coding theory is the study of methods for efficient and accurate
transfer of information from one place to another.

Definition 1.1. Channel
The physical medium through which the information is transmitted is
called a channel.
Definition 1.2. Noise
Undesirable disturbance which may cause the information received
to differ from what was transmitted is called noise.

Coding theory deals with the problem of dealing and correcting
transmission error caused by noise on the channel.Rough idea of a
general information transmission system.
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The most important part of diagram is noise because without it
there would be no need for coding theory.

1.2 Basic Assumption
We state some fundamental definitions and assumptions which will
be applied in the coding theory.

Definition 1.3. Digits
The information to be sent is transmitted by a sequence of 0’s and
1’s which is called digits.

Definition 1.4. Word
Word is a sequence of digits.

Definition 1.5. Length of Word
The length of a word is the number of digits in the word.

Definition 1.6. Binary Code
A binary code is the set of words.
Eg: C= {00,01,10,11}

Definition 1.7. Block Code
A block code is code having all its words of the same length.

Definition 1.8. Codewords
The words that belong to a given code is called codewords. We denote
the number of codewords in a code c by |c|.

A word is transmitted by sending its digits one after other across
a binary channel. Each digit is transmitted mechanically, electri-
cally, magnetically or by one of two types of easily differentiated
pulses.

The codeword of length n is received as a word of length n. There
is no difficulty in identifying the beginning of the first word trans-
mitted. For example if we are using codeword of length 3 and receive
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011011001, then the word received are in order 011,011,001.

Noise is scattered randomly as opposed to being in clumps is
called bursts. That is the probability of any one digit being affected
in transmission is same as that of any other digit and is not influ-
enced by errors made in neighbouring digits.

A binary channel is symmetric, if 0 and 1 are transmitted with
equal accuracy. The reliability of Binary Symmetric Channel(BSC)
is a real number p , 0≤p ≤ 1, where p is the probability that the
digit sent is the digit received.

If p is the probability that the digit received is the digit sent and
1-p is the probability that the digit received is not the digit sent.
Then the following diagram shows how BSC operates.

Remarks

• The total number of words of length n is 2n.

• If p=1 is the perfect channel then there is no chance of a digit
being altered in transmission. If all Channel is perfect. then
there is no need of coding theory. But no channel is perfect.

• Any channel with 0≤p≤ 1
2

can be converted into a channel with
1
2
≤ p ≤ 1. We are using BSC with probability 1

2
<p<1.

• Actually a channel p=0 is uninteresting because we can change
by converting 0’s into1 and 1’s into 0. This will not help in the
development coding theory.
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1.3 Information Rate
The addition of digits to codeword may be improve error correction.
1
n
log2|c| is the information rate of a code is the number that is

designs measure the proportion of each codeword.The information
rate ranges between 0 and 1.

1.4 The Effects Of Error Correction And De-
tection

To demonstrate the dramatic effect that the addition of a parity-
check digit to a code can have in recognizing when error occur, we
consider the following codes.
Suppose that all 211 words of length 11 are codewords; then no er-
ror is detected.
Let the reliability of the channel be p = 1-10−8.
Suppose that digits are transmitted at the rate of 107 digits per sec-
ond.
The probability that the word is transmitted incorrectly is approxi-
mately 11p10(1-p), is about 11

108
.

11
108

. 107

11
= 0.1 words per second

are transmitted incorrectly without being detected. That is one
wrong word every 10 seconds, 6 a minute, 360 an hour, or 8640 a day!

Now suppose that a parity-check digit is added to each codeword,
so the number of 1’s in each of the 2048 codewords is even. Then
any single error is always detected, so at least 2 errors must occur if
a word is to be transmitted incorrectly without our knowledge. The
probability of at least 2 error occurring is 1-p12-12P11(1-p) which is
approximated by

(
12
2

)
p10(1-p)2.

p=1-10−8 → 66
1016

Now approximately
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66
1016

107

12
= 5.5×10−9

words per second are transmitted incorrectly without being detected.
That is about one error every 2000 days!

So if we are willing to reduce the information rate by lengthen-
ing the code from 11 to 12 we are very likely to know when errors
occur. To decide where these errors have actually occurred, we may
need to request the retransmission of the message. Physically this
means that either transmission must be held up until confirmation
is received or messages must be stored temporarily until retrans-
mission is requested; both alternatives may be very costly in time
or in storage space.

Therefore, at the expense of further increase in wordlength, it
may well be worth incorporating error- correction capabilities into
the code. Introducing such capabilities may also make encoding
and decoding more difficult, but will help to avoid the hidden costs
in time or space mentioned above.

One simple scheme to introduce error-correction is to form a rep-
etition code where each codeword is transmitted three times in suc-
cession. Then if at most one error is made per 33 digit codeword,
at least two of the three transmission will be correct. Then the in-
formation rate is 1

3
. So we add only 4 extra digit to each 11 digit

codeword. This produce a code with information rate 11
15

.

So it is our task to design codes with reasonable information
rates, low encoding and decoding costs and some error-correcting
or error-detecting capabilities that make the need for retransmis-
sion unlikely.

1.5 Weight And Distance
Let v be a word of length n. The Hamming weight or simply weight
of v is the number of times the digit 1 occur in v . We denote weight
of v as wt(v).
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Example 1.5.1. wt(110101)= 4

Let v and w be words of length n. Then the Hamming Distance
or simply distance between v and w is the number of positions in
which v and w disagree. We denote distance between v and w as
d(v,w).

Eg: d(01011,00111)=2
Note
The distance between v and w is same as the weight of error pattern.
That is

d(v, w) = wt(v+w).

Example 1.5.2. d(v, w) =d(11010,01101)=4
wt(v+w) = wt(11010=01101) = wt(10111) = 4

The probability formula of error pattern u=v+w ,

ϕp(v,w)= pn−wt(u)(1-p)wt(u)

1.6 Maximum Likelihood Decoding
Two basic problems of coding,

1. Encoding : We have to determine a code to use for sending our
messages.

• First we select a positive integer k, the length of each bi-
nary word corresponding to a message k, k must be cho-
sen so that |M| ≤ |kk|= 2k.

• Next we decide how many digit we need to add to each
word of length k to ensure that as many errors can be
corrected or detected as we require.

• To transmit a particular message then transmitter finds
the word of length k assigned to that of message,then
transmits the codeword of length n corresponding to that
word of length k.
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2. Decoding: A word w in knis received. Now we proceed MLD,
for decoding which word v in c was sent.

(a) Complete Maximum Likelihood Decoding: If there is one
and only one word v in c close to w than any other word in
c, we decode w as v. if there are several words in c closest
to w, then we select arbitrary one of them and conclude
that it was the codeword sent.

(b) Incomplete MLD: if there is a unique word v in c closest to
w, then we decode w as v. but if there are several words
in c, at the same distance from w, then we request a re-
transmission. In some cases if the received word w is too
far away from any word in the code, we ask for a retrans-
mission.

1.7 Reliability Of MLD
The probability that if v is sent over a BSC of probability p then
IMLD correctly concludes that v was sent. θp(C,v) is the sum of all
the probabilities θp(v,w) as w ranges over L(v). That is,

θp(C,v)=
∑

w∈L(v) θp(v, w)

where L(v) all word which are close to v. The higher the probability
is, the more correctly the word can be decoded.

1.8 Error Detection and correction

Error Detecting Code
If v in C sent and w in kn is received, then u=v+w is the error pat-
tern. Any word u in kn can occur as an error pattern, and we wish
to know which error patterns C will detect.
We say that code C detects the error pattern u if and only if v+u
is not a codeword, for every v in C. In other words, u is detected if
for any transmitted codeword v, the decoder upon receiving v+u can
recognize that it is not a codeword and hence that some error has
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occurred.

Example 1.8.1. Let C={001, 101, 110} for the error pattern u=010.
We calculate v+010 for all v in C.

001+010=011, 101+010=111, 110+010=100

None of the three words 011, 111 or 100 is in C, so C detects the error
pattern 010. On the other hand, for the error pattern u= 100,

001+100=101, 101+100=001, 110+100=010

Since at least one of these sums is in C, C does not detect the er-
ror pattern 100.

Error Correcting Code
If a word v in a code C is transmitted over BSC and w is the received
resulting in the error pattern u=v+w. Then code C corrects the error
pattern u, if for all v in C, v+u is closer to v than to any other word
in C. Also, a code is said to be a t error correcting code if it corrects
all error patterns of weight at most t and does not correct at least
one error pattern of weight t+1.

Example 1.8.2. Let C={000,111}

• Take the error pattern u=010. For v=000

d(000,v+u)=d(000,010)=1 and
d(111,v+u)=d(111,010)=2

And for v=111,

d(000,v+u)=d(000,101)=2
d(111,v+u)=d(111,101)=1

Thus C corrects the error pattern 010.

• Now take the error pattern u=110. For v=000

13



d(000,v+u)=d(000,110)=2 and
d(111,v+u)=d(111,110)=1

Since v+u is not closer to v=000 than to 111. C does not correct
the error pattern 110.
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CHAPTER 2

LINEAR CODE

2.1 Linear code
A code C is called a linear code if v+w is a word in C whenever v and
w are in C. That is, a linear code is a code which is closed under
addition of words.

Example 2.1.1. C = {000, 111} is a linear code, since all four of the sums.

000+000=000
000+111=111
111+000=111
111+111=000

are in C. But C1 = {000, 001, 101} is not a linear code, since 001 and
101 are in C1 but 001+101 is not in C1.

2.2 Two Important Subspace
The vector w is said to be a linear combination of vectors v1, v2,.......vK,
if there are scalars a1, a2,.......ak as such that,

w=a1v1+a2v2+......+akvk

The set of all linear combinations of the vectors in a given set
S={v1,v2,.......vk} is called the linear span of S, and is denoted by <S>.
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If S is empty, we define <S>= {0}.
In linear algebra it is shown that for any subset S of a vector space V,
the linear span <S> is a subspace of V, called the subspace spanned
or generated by S.

Theorem 2.2.1. For any subset S of Kn, the code C=<S> generated
by S consists precisely of the following words the zero word, all words
in S, and all sums of two or more words in S.

Example 2.2.1. Let S = {0100, 0011, 1100}. Then the code C =<S>
generated by S consists of

0000, 0100, 0100+0011=0111, 0100+0011+1100=1011,
1100, 0011,0100+1100=1000, 0011+1100=1111;

that is, C=<S>={0000,0100,0011,1100,0111,1000,111,1011}.

2.3 Independence, Basis, Dimension
The main objective is to find an efficient way to describe a linear
code without having to list all the codewords.
A set S={v1,v2,.......vk} of vectors is linearly dependent if these are
scalars a1, a2,.......ak not all zero such that,

a1v1+a2v2+......+akvk=0

Otherwise the set S is linearly independent.
The test for linear independence, then, is to form the vector equation
using arbitrary scalars. All the scalars a1, a2,.......ak to be 0, then
the set S is linearly independent. If at least one ai can be chosen to
be non-zero then S is linearly independent.
Any set of vectors containing the zero vectors is linearly dependent.
A nonempty subset B, of vectors from a vector space V is a basis for
V if both:

1. B spans V (that is, <B>=V)

2. B is linearly independent set.
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Note
Any Linearly independent set B is automatically a basis for <B>.
Also since any linearly independent set S of vectors that contains a
nonzero word always contains a largest independent subset B, we
can extract from S a basis B for <S>. If S={0} then we say that the
basis of S is the empty set Q.

Theorem 2.3.1. A linear code of dimension k contains precisely 2k

codewords.

Theorem 2.3.2. Let C=<S> be the linear code generated by a subset
S of kn. Then (dimension of C)+(dimension of C⊥)=n

Theorem 2.3.3. A linear code of dimension k has precisely
1
k!

∏k−1
i=0 (2

k − 2i) different bases.

Example 2.3.1. The linear code k4 and hence
1
4!

∏3
i=0(2

4 − 2i)= 1
4!

(24-1)(24-2)(24-22)(24-23)= 840 different bases.
Any linear code contained in kn, for n≥4 which has dimension 4 also
has 840 different bases.

2.4 Matrices
An m×n matrix is a rectangular array of scalars with m rows and n columns.
If A is an m × n matrix and B is an n×p matrix, then the product
AB is the m×p matrix which has for its (i,j)th entry.

[
1 0 1 1
0 1 0 1

] 
1 0 1
0 1 1
1 0 1
1 0 0

 =
[
1 0 0
1 1 1

]

There are two types of elementary row operations which may be
performed on a matrix over K. They are:

1. interchanging two rows

2. replacing a row by itself plus another row
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Two matrices are row equivalent if one can be obtained from the
other by a sequence of elementary row operators.
A1 in a matrix M (over K) is called a leading 1 if there are no 1s to its
left in the same row, and a column of M is called a leading column
if it contains a leading 1. M is in Row Echelon Form (REF) if the
zero rows of M (if any) are all at the bottom, and each leading 1 is
to the right of the leading 1s in the rows above.
If further, each leading column contains exactly one 1, M is in Re-
duced Row Echelon Form (RREF).

Example 2.4.1. Find the REF for the matrix M below using elemen-
tary row operation.

M =


1 0 1 1
1 1 0 1
1 1 1 1
1 0 0 0



⇒


1 0 1 1
0 1 1 0
0 1 0 0
0 0 1 1

 (add row 1 to row 2, row 3 and row 4)

⇒


1 0 1 1
0 1 1 0
0 0 1 0
0 0 1 1

 (add row 2 to row 3)

⇒


1 0 1 1
0 1 1 0
0 0 1 0
0 0 0 1

 (add row 3 to row 4)

So the REF of matrix M is
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
1 0 1 1
0 1 1 0
0 0 1 0
0 0 0 1


Example 2.4.2. Find the RREF for the matrix M below using elemen-
tary row operation.

M=

1 0 1 1
1 0 1 0
1 1 0 1



→

1 0 1 1
0 0 0 1
0 1 1 0

(add row 1 to row 2 and to row 3)

→

1 0 1 1
0 1 1 0
0 0 0 1

(interchange row 2 and 3)

→

1 0 1 0
0 1 1 0
0 0 0 1

(add row 3 to row 1)

So the RREF of matrix M is 1 0 1 0
0 1 1 0
0 0 0 1


2.5 Bases for C=<S> and C⊥

We develop algorithms for finding bases for a linear code and its
dual.
Let S be a nonempty subset of Kn. The first two algorithms provide
a basis for C=<S>, the linear code generated by S.

Algorithm 2.5.1. Form the matrix A whose rows are the words in S.
Use elementary row operations to find a REF of A. Then the nonzero
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rows of the REF form a basis for C =<S>.
The algorithm works because the rows of A generate C and elemen-
tary row operations simply interchange words or replace one word
(row) with another in C giving a new set of codewords which still gen-
erates C. Clearly the nonzero rows of a matrix in REF are linearly in-
dependent.

Example 2.5.1. We find a basis for the linear code C=<S> for
S = {11101, 10110, 01011, 11010}

A=


1 1 1 0 1
1 0 1 1 0
0 1 0 1 1
1 1 0 1 0



→


1 1 1 0 1
0 1 0 1 1
0 1 0 1 1
0 0 1 1 1

 (add row 1 to row 2 and to row 4)

→


1 1 1 0 1
0 1 0 1 1
0 0 1 1 1
0 1 0 1 1

 (interchange row 3 to row 4)

→


1 1 1 0 1
0 1 0 1 1
0 0 1 1 1
0 0 0 0 0

 (add row 2 to row 4)

The last matrix is a REF of A. By Algorithm 2.5.1. {11101, 01011,
00111} is a basis for C=<S> . Another REF of A is


1 1 1 0 1
0 1 1 0 0
0 0 1 1 1
0 0 0 0 0


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So {11101, 01100, 00111} is also a basis for C=<S >. Note that Al-
gorithm 2.5.1 does not produce a unique basis for <S>, nor are the
words in the basis necessarily in the given set S.

Algorithm 2.5.2. Form the matrix A whose rows are the words in S.
Use elementary row operations to place A in RREF. Let G be the k×n
matrix consisting of all the nonzero rows of the RREF. Let X be the
k×(n-k) matrix obtained from G by deleting the leading columns of G.
Form an n×(n-k) matrix H as follows:

1. In the rows of H corresponding to the leading columns of G,
place, in order,the rows of X.

2. In the remaining n-k rows of H, place, in order, the rows of the
(n-k)×(n-k) identity matrix I.

Then the columns of H form a basis for C⊥

2.6 Generating Matrices and Encoding
The rank of a matrix over K is the number of nonzero rows in any
REF of the matrix. The dimension k of the code C is the dimension
of C, as a subspace of Kn. If C also has length n and distance d,
then we refer to C as an (n, k, d) linear code.
If C is a linear code of length n and dimension k, then any matrix
whose rows form a basis for C is called a generator matrix for C.
Note
A generator matrix for C must have k rows and n columns and it
must have rank k.

Theorem 2.6.1. A matrix G is a generator matrix for some linear
code C if and only if the rows of G are linearly independent, that is,
if and only if the rank of G is equal to the number of rows of G.

Theorem 2.6.2. If G is a generator matrix for a linear code C, then
any matrix row equivalent to G is also a generator matrix for C. In
particular, any linear code has a generator matrix in RREF.
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Example 2.6.1. We find a generator matrix for the code
C={0000,1110,0111,1001}. Using Algorithm 2.5.1,

A=


0 0 0 0
1 1 1 0
0 1 1 1
1 0 0 1

 →


1 1 1 0
0 1 1 1
1 0 0 1
0 0 0 0

 →


1 1 1 0
0 1 1 1
0 1 1 1
0 0 0 0

 →


1 1 1 0
0 1 1 1
0 0 0 0
0 0 0 0


so G=

[
1 1 1 0
0 1 1 1

]
is a generator matrix for C. By Algorithm 2.5.2,

since the RREF of A is


1 0 0 1
0 1 1 1
0 0 0 0
0 0 0 0

, G1=
[
1 0 0 1
0 1 1 1

]
is also a gener-

ator matrix for C.

2.7 Parity Check Matrices
A matrix H is called a parity-check matrix for a linear code C if
the columns of H form a basis for the dual code C. If C has length
n and dimension k, then, since the sum of the dimensions of C
and C⊥ is in any parity-check matrix for C must have n rows, n-k
columns and rank n - k.

Theorem 2.7.1. A matrix H is a parity-check matrix for some linear
code C if and only if the columns of H are linearly independent

Theorem 2.7.2. If H is a parity-check matrix for a linear code C of
length n, then C consists precisely of all words v in Kn such that vH=0.

Theorem 2.7.3. Matrices G and H are generating and parity-check
matrices, respectively, for some linear code C if and only if

1. the rows of G are linearly independent,

2. the columns of H are linearly independent,

3. the number of rows of G plus the number of columns of H equals
the number of columns of G which equals the number of rows of
H,

22



4. GH=0

Theorem 2.7.4. H is a parity-check matrix of C if and only if HT is
a generator matrix for C⊥

Example 2.7.1. We find a parity check matrix for the code
C={0000,1110,0111,1001} of Example 2.6.1. There we found that

G1=
[
10 01
01 11

]
=
[
I X

]
is a generator matrix for C which is in RREF. By Algorithm 2.5.2, we
connect H

H =
[
X
I

]
=


01
11
10
01


is a parity check matrix for C. Note that vH= 00 for all words v in C.

2.8 Distance of Linear Code
The distance of a linear code is the minimum weight of any nonzero
codeword. The distance of a linear code can also be determined
from a parity-check matrix for the code.

Theorem 2.8.1. Let H be a parity-check matrix for a linear code C.
Then C has distance d if and only if any set of d-1 rows of H is linearly
independent, and at least one set of d rows of linearly dependent.

Example 2.8.1. Let C be the linear code with parity-check matrix

H =


110
011
100
010
001


By inspection it is seen that no two rows of H sum to 000, so any two
rows of H are linearly independent. But rows 1, 3, and 4, for instance
sum to 000, and hence are linearly dependent. Therefore d-1=2, so
the distance of C is d = 3.
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2.9 Cosets
If C is a linear code of length n, and if u is any word of length n,
we define the coset of C determined by u to be the set of all words
of the form v+u as v ranges over all the words in C. We denote this
coset by C+u. Thus,

C + u ={v+u|v ∈ C}.

Example 2.9.1. Let C={000, 111}, and let u= 101. Then,

C+101={000+ 101, 111+101} = {101,010}.

Note that also

C+111= {000+111, 111+111}={111,000} = C

and

C+010= {000 +010, 111+010)}={010, 101}= C+101.

Theorem 2.9.1. Let C be a linear code of length n. Let u and v be
words of length of n.

1. If u is in the coset C + v, then C + u = C + v; that is, each word
in a coset determines that coset.

2. The word u is in the coset C + u.

3. If u + v is in C, then u and v are in the same coset.

4. If u + v is not in C, then u and v are in different cosets.

5. Every word in Kn is contained in one and only one coset of C;
that is, either C + u = C + v, or C + u and C + v have no words
in common.

6. |C + u|= |C|; that is, the number of words in a coset of C is
equal to the number of words in the code C.

7. If C has dimension k, then there are exactly 2n−k different cosets
of C, and each coset contains exactly 2kwords.
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8. The code C itself is one of its cosets.

Example 2.9.2. We list the cosets of the code

C= { 0000,1011,0101,1110}

• C itself is a coset.(Theorem 2.10.1 (8))

• Every word in C will determine the coset C by (tTheorem 2.10.1
(1) and (5)), so we pick a word u in K4 not in C. For later use in
decoding, it will help to pick u of smallest weight possible. So
let’s take u = 1000. Then we get the coset,

C + 1000 ={ 1000,0011,1101,0110}.

• Now pick another word, of small weight, in K but not in C or
C+1000, say 0100. Form another coset,

C + 0100 = {0100, 1111, 0001, 1010}.

• Repeating the process with 0010 yields the coset

C + 0010 = {0010,1001,0111,1100}

• The code C has dimension k = 2. Then,

2n−k= 24−2= 22= 4

We have listed 4 cosets with 2k= 2n= 4 words.and every word
in K4 is accounted for appearing in exactly one coset.

• Also observe that 0001 + 1010= 1011 is in C, thus 0001 and
1010 are in the same coset, namely C+0100 (see (3)). On the
other hand, 0100 + 0010= 0110 is not in C, and 0100 and 0010
are in different cosets (see (4)).
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2.10 MLD for Linear Code
Let C be a linear code. Assume the codeword v in C is transmitted
and the word w is received, resulting in the error pattern u = v + w.
Then w + u = v is in C, so the error pattern u and the received word
w are in the same coset of C by (3) of Theorem 2.10.1.

Since error patterns of small weight are the most likely to occur,
here is how MLD works for a linear code C. Upon receiving the word
w, we choose a word u of least weight in the coset C + w (which must
contain w) and conclude that v = w + u was the word sent.

Example 2.10.1. Let C={0000, 1011, 0101, 1110}. The cosets of C
(Example 2.10.2) are

Suppose w= 1101 is received.

C + w = C + 1101= {1101,0110,1000,0011}

The coset C + w= C+ 1101 containing w is the second one listed.
The word of least weight in this coset is u= 1000, which we choose
as the error pattern.
We conclude that,

v = w + u = 1101 + 1000 = 0101

0101was the most likely codeword sent.

Now suppose w=1111 is received.

C + w = C + 1111={1111,0100,1010,0001}

In the coset C+w containing 1111 there are two words of smallest
weight, 0100 and 0001. Since we are doing CMLD, we arbitrarily
select one of these, say u= 0100, for the error pattern, and conclude
that v = w + u= 1111 + 0100 = 1011 was a most likely codeword sent.
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Theorem 2.10.1. Let C be a linear code of length n. Let H be a
parity-check matrix for C. Let w and u be words in Kn.

1. wH = 0 if and only if w is a codeword in C.

2. wH = uH if and only if w and u lie in the same coset of C.

3. If u is the error pattern in a received word w, then uH is the sum
of the rows of H that correspond to the positions in which errors
occurred in transmission.
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CONCLUSION

Our aim was to take a note on coding theory by its breath of cov-
erage. Coding theory is the study of properties of codes and their
respective fitness for specific applications. Codes are used for data
compression, cryptography, error detection and correction, data
transmission and data storage. Codes are studied by various scien-
tific disciplines such as information theory, electrical engineering,
mathematics, linguistics and computer science-for the purpose of
designing efficient and reliable data transmission methods. This
typically involves the removal of redundancy and the correction or
detection of errors in the transmitted data. This project work helps
us to know more about coding theory.
I have much pleasure in conveying my heart full thanks to my teach-
ers and colleagues.
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INTRODUCTION

Coding theory is the study of the properties of codes and their re-
spective fitness for specific applications. Codes are used for data
compression, cryptography, error detection and correction, data
transmission and data storage. Codes are studied by various scien-
tific disciplines—such as information theory, electrical engineering,
mathematics, linguistics, and computer science— for the purpose
of designing efficient and reliable data transmission methods. This
typically involves the removal of redundancy and the correction or
detection of errors in the transmitted data.

Coding theory, sometimes called algebraic coding theory, deals
with the design of error-correcting codes for the reliable transmis-
sion of information across noisy channels. It makes use of classical
and modern algebraic techniques involving finite fields, group the-
ory, and polynomial algebra. It has connections with other areas of
discrete mathematics, especially number theory and the theory of
experimental designs.

The history of coding theory is in 1948, Claude Shannon pub-
lished "A Mathematical Theory of Communication", an article in two
parts in the July and October issues of the Bell System Technical
Journal. This work focuses on the problem of how best to encode
the information a sender wants to transmit. In this fundamen-
tal work he used tools in probability theory, developed by Norbert
Wiener, which were in their nascent stages of being applied to com-
munication theory at that time. Shannon developed information
entropy as a measure for the uncertainty in a message while es-
sentially inventing the field of information theory.The binary Golay
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code was developed in 1949. It is an error-correcting code capable
of correcting up to three errors in each 24-bit word, and detect-
ing a fourth.

In first chapter ’Introduction to Coding Theory’ we discussed
about some basic concept of Coding Theory. It includes Basic As-
sumption where some fundamental definition and assumptions are
stated, Information Rate, The Effect of Error Correction and Detec-
tion, Weight and Distance, Maximum Likelihood Decoding, Reliabil-
ity of MLD, Error Detection and Correction. In the second chapter
’Linear Code’ we discuss about linear codes and its properties and
also some theorems. Linear Code is an important concept in Coding
Theory. Second chapter includes Independence, Basis and Dimen-
sion, Matrices, Finding Bases for C, Generating Matrices, Parity
Check Matrices, Equivalent Code, Distance of Linear Codes, Cosets,
MLD of Linear Code.
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PRELIMINARY

Binary Number
A binary number is a number expressed in the basis-2 numerical
system or binary number system, a method of which uses only two
symbols: typically "0" and "1".

Binary Addition
Binary addition is the sum of two or more binary numbers. Binary
addition rules is,
0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0

Probability
Probability is the likelihood that an event will occur and is calcu-
lated by dividing the number of favourable outcomes by the total
number of possible outcomes.

Linear Combination
Let V be a vector space and S is non empty subset of V. A vector x in
V is said to be a linear combination of elements of S if there exist a
finite number of elements y1,y2,.....,yn in S and scalars α1,α2,.....,αn

in F such that x=α1y1+α2y2+......+αnyn
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Span
Let S be a non-empty subset of a vector space V, the set of all linear
combination of S is called Span of S. It is denoted by [S] or Span(S).

Subspace
A subset W of a vector space V over a field F is called a subspace of
V if W is a vector space over F under the operation of addition and
scalar multiplication defined on V.

Subset
A set A is a subset of another set B if all element of the set A are
element of the set B.

Linearly Independent and Dependent
Let S={u1,u2,.....,un} be a subset of a vector space V, α1,α2,.....,αn be
scalars and α1u1+α2u2+......+αnun be a linear combination of S.

The set S={u1,u2,.....,un} is said to be Linearly Independent if
α1u1+α2u2+......+αnun=0 ⇒ α1=α2,.....=αn= 0 (The only solution).

If there exist a non-trivial solution for α1,α2,.....,αn, That is atleast
one αi is not zero. Then the set is called Linearly Dependent.

Dimension
Let β be a basis of a vector space V if the number of vectors in β is
n then the vector space V is called n-dimensional vector space and
written as dim(V)=n.

Elementary Row Operation
The operation that are performed on rows of a matrix.

4



Rank
The number ’r’ with the following two properties is called the Rank
of the matrix.

1. There is atleast one non-zero minor of order r.

2. Every minor of order (r+1) is zero or vanish.

Cosets
Coset is subset of mathematical group consisting of all the products
obtained by multiplying fixed element of group by each of elements
of given subgroup, either on right or on left. Cosets are basic tool
in study of groups
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CHAPTER 1

INTRODUCTION TO CODING
THEORY

1.1 Coding Theory
Coding theory is the study of methods for efficient and accurate
transfer of information from one place to another.

Definition 1.1. Channel
The physical medium through which the information is transmitted is
called a channel.
Definition 1.2. Noise
Undesirable disturbance which may cause the information received
to differ from what was transmitted is called noise.

Coding theory deals with the problem of dealing and correcting
transmission error caused by noise on the channel.Rough idea of a
general information transmission system.
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The most important part of diagram is noise because without it
there would be no need for coding theory.

1.2 Basic Assumption
We state some fundamental definitions and assumptions which will
be applied in the coding theory.

Definition 1.3. Digits
The information to be sent is transmitted by a sequence of 0’s and
1’s which is called digits.

Definition 1.4. Word
Word is a sequence of digits.

Definition 1.5. Length of Word
The length of a word is the number of digits in the word.

Definition 1.6. Binary Code
A binary code is the set of words.
Eg: C= {00,01,10,11}

Definition 1.7. Block Code
A block code is code having all its words of the same length.

Definition 1.8. Codewords
The words that belong to a given code is called codewords. We denote
the number of codewords in a code c by |c|.

A word is transmitted by sending its digits one after other across
a binary channel. Each digit is transmitted mechanically, electri-
cally, magnetically or by one of two types of easily differentiated
pulses.

The codeword of length n is received as a word of length n. There
is no difficulty in identifying the beginning of the first word trans-
mitted. For example if we are using codeword of length 3 and receive
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011011001, then the word received are in order 011,011,001.

Noise is scattered randomly as opposed to being in clumps is
called bursts. That is the probability of any one digit being affected
in transmission is same as that of any other digit and is not influ-
enced by errors made in neighbouring digits.

A binary channel is symmetric, if 0 and 1 are transmitted with
equal accuracy. The reliability of Binary Symmetric Channel(BSC)
is a real number p , 0≤p ≤ 1, where p is the probability that the
digit sent is the digit received.

If p is the probability that the digit received is the digit sent and
1-p is the probability that the digit received is not the digit sent.
Then the following diagram shows how BSC operates.

Remarks

• The total number of words of length n is 2n.

• If p=1 is the perfect channel then there is no chance of a digit
being altered in transmission. If all Channel is perfect. then
there is no need of coding theory. But no channel is perfect.

• Any channel with 0≤p≤ 1
2

can be converted into a channel with
1
2
≤ p ≤ 1. We are using BSC with probability 1

2
<p<1.

• Actually a channel p=0 is uninteresting because we can change
by converting 0’s into1 and 1’s into 0. This will not help in the
development coding theory.
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1.3 Information Rate
The addition of digits to codeword may be improve error correction.
1
n
log2|c| is the information rate of a code is the number that is

designs measure the proportion of each codeword.The information
rate ranges between 0 and 1.

1.4 The Effects Of Error Correction And De-
tection

To demonstrate the dramatic effect that the addition of a parity-
check digit to a code can have in recognizing when error occur, we
consider the following codes.
Suppose that all 211 words of length 11 are codewords; then no er-
ror is detected.
Let the reliability of the channel be p = 1-10−8.
Suppose that digits are transmitted at the rate of 107 digits per sec-
ond.
The probability that the word is transmitted incorrectly is approxi-
mately 11p10(1-p), is about 11

108
.

11
108

. 107

11
= 0.1 words per second

are transmitted incorrectly without being detected. That is one
wrong word every 10 seconds, 6 a minute, 360 an hour, or 8640 a day!

Now suppose that a parity-check digit is added to each codeword,
so the number of 1’s in each of the 2048 codewords is even. Then
any single error is always detected, so at least 2 errors must occur if
a word is to be transmitted incorrectly without our knowledge. The
probability of at least 2 error occurring is 1-p12-12P11(1-p) which is
approximated by

(
12
2

)
p10(1-p)2.

p=1-10−8 → 66
1016

Now approximately
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66
1016

107

12
= 5.5×10−9

words per second are transmitted incorrectly without being detected.
That is about one error every 2000 days!

So if we are willing to reduce the information rate by lengthen-
ing the code from 11 to 12 we are very likely to know when errors
occur. To decide where these errors have actually occurred, we may
need to request the retransmission of the message. Physically this
means that either transmission must be held up until confirmation
is received or messages must be stored temporarily until retrans-
mission is requested; both alternatives may be very costly in time
or in storage space.

Therefore, at the expense of further increase in wordlength, it
may well be worth incorporating error- correction capabilities into
the code. Introducing such capabilities may also make encoding
and decoding more difficult, but will help to avoid the hidden costs
in time or space mentioned above.

One simple scheme to introduce error-correction is to form a rep-
etition code where each codeword is transmitted three times in suc-
cession. Then if at most one error is made per 33 digit codeword,
at least two of the three transmission will be correct. Then the in-
formation rate is 1

3
. So we add only 4 extra digit to each 11 digit

codeword. This produce a code with information rate 11
15

.

So it is our task to design codes with reasonable information
rates, low encoding and decoding costs and some error-correcting
or error-detecting capabilities that make the need for retransmis-
sion unlikely.

1.5 Weight And Distance
Let v be a word of length n. The Hamming weight or simply weight
of v is the number of times the digit 1 occur in v . We denote weight
of v as wt(v).

10



Example 1.5.1. wt(110101)= 4

Let v and w be words of length n. Then the Hamming Distance
or simply distance between v and w is the number of positions in
which v and w disagree. We denote distance between v and w as
d(v,w).

Eg: d(01011,00111)=2
Note
The distance between v and w is same as the weight of error pattern.
That is

d(v, w) = wt(v+w).

Example 1.5.2. d(v, w) =d(11010,01101)=4
wt(v+w) = wt(11010=01101) = wt(10111) = 4

The probability formula of error pattern u=v+w ,

ϕp(v,w)= pn−wt(u)(1-p)wt(u)

1.6 Maximum Likelihood Decoding
Two basic problems of coding,

1. Encoding : We have to determine a code to use for sending our
messages.

• First we select a positive integer k, the length of each bi-
nary word corresponding to a message k, k must be cho-
sen so that |M| ≤ |kk|= 2k.

• Next we decide how many digit we need to add to each
word of length k to ensure that as many errors can be
corrected or detected as we require.

• To transmit a particular message then transmitter finds
the word of length k assigned to that of message,then
transmits the codeword of length n corresponding to that
word of length k.

11



2. Decoding: A word w in knis received. Now we proceed MLD,
for decoding which word v in c was sent.

(a) Complete Maximum Likelihood Decoding: If there is one
and only one word v in c close to w than any other word in
c, we decode w as v. if there are several words in c closest
to w, then we select arbitrary one of them and conclude
that it was the codeword sent.

(b) Incomplete MLD: if there is a unique word v in c closest to
w, then we decode w as v. but if there are several words
in c, at the same distance from w, then we request a re-
transmission. In some cases if the received word w is too
far away from any word in the code, we ask for a retrans-
mission.

1.7 Reliability Of MLD
The probability that if v is sent over a BSC of probability p then
IMLD correctly concludes that v was sent. θp(C,v) is the sum of all
the probabilities θp(v,w) as w ranges over L(v). That is,

θp(C,v)=
∑

w∈L(v) θp(v, w)

where L(v) all word which are close to v. The higher the probability
is, the more correctly the word can be decoded.

1.8 Error Detection and correction

Error Detecting Code
If v in C sent and w in kn is received, then u=v+w is the error pat-
tern. Any word u in kn can occur as an error pattern, and we wish
to know which error patterns C will detect.
We say that code C detects the error pattern u if and only if v+u
is not a codeword, for every v in C. In other words, u is detected if
for any transmitted codeword v, the decoder upon receiving v+u can
recognize that it is not a codeword and hence that some error has

12



occurred.

Example 1.8.1. Let C={001, 101, 110} for the error pattern u=010.
We calculate v+010 for all v in C.

001+010=011, 101+010=111, 110+010=100

None of the three words 011, 111 or 100 is in C, so C detects the error
pattern 010. On the other hand, for the error pattern u= 100,

001+100=101, 101+100=001, 110+100=010

Since at least one of these sums is in C, C does not detect the er-
ror pattern 100.

Error Correcting Code
If a word v in a code C is transmitted over BSC and w is the received
resulting in the error pattern u=v+w. Then code C corrects the error
pattern u, if for all v in C, v+u is closer to v than to any other word
in C. Also, a code is said to be a t error correcting code if it corrects
all error patterns of weight at most t and does not correct at least
one error pattern of weight t+1.

Example 1.8.2. Let C={000,111}

• Take the error pattern u=010. For v=000

d(000,v+u)=d(000,010)=1 and
d(111,v+u)=d(111,010)=2

And for v=111,

d(000,v+u)=d(000,101)=2
d(111,v+u)=d(111,101)=1

Thus C corrects the error pattern 010.

• Now take the error pattern u=110. For v=000

13



d(000,v+u)=d(000,110)=2 and
d(111,v+u)=d(111,110)=1

Since v+u is not closer to v=000 than to 111. C does not correct
the error pattern 110.

14



CHAPTER 2

LINEAR CODE

2.1 Linear code
A code C is called a linear code if v+w is a word in C whenever v and
w are in C. That is, a linear code is a code which is closed under
addition of words.

Example 2.1.1. C = {000, 111} is a linear code, since all four of the sums.

000+000=000
000+111=111
111+000=111
111+111=000

are in C. But C1 = {000, 001, 101} is not a linear code, since 001 and
101 are in C1 but 001+101 is not in C1.

2.2 Two Important Subspace
The vector w is said to be a linear combination of vectors v1, v2,.......vK,
if there are scalars a1, a2,.......ak as such that,

w=a1v1+a2v2+......+akvk

The set of all linear combinations of the vectors in a given set
S={v1,v2,.......vk} is called the linear span of S, and is denoted by <S>.

15



If S is empty, we define <S>= {0}.
In linear algebra it is shown that for any subset S of a vector space V,
the linear span <S> is a subspace of V, called the subspace spanned
or generated by S.

Theorem 2.2.1. For any subset S of Kn, the code C=<S> generated
by S consists precisely of the following words the zero word, all words
in S, and all sums of two or more words in S.

Example 2.2.1. Let S = {0100, 0011, 1100}. Then the code C =<S>
generated by S consists of

0000, 0100, 0100+0011=0111, 0100+0011+1100=1011,
1100, 0011,0100+1100=1000, 0011+1100=1111;

that is, C=<S>={0000,0100,0011,1100,0111,1000,111,1011}.

2.3 Independence, Basis, Dimension
The main objective is to find an efficient way to describe a linear
code without having to list all the codewords.
A set S={v1,v2,.......vk} of vectors is linearly dependent if these are
scalars a1, a2,.......ak not all zero such that,

a1v1+a2v2+......+akvk=0

Otherwise the set S is linearly independent.
The test for linear independence, then, is to form the vector equation
using arbitrary scalars. All the scalars a1, a2,.......ak to be 0, then
the set S is linearly independent. If at least one ai can be chosen to
be non-zero then S is linearly independent.
Any set of vectors containing the zero vectors is linearly dependent.
A nonempty subset B, of vectors from a vector space V is a basis for
V if both:

1. B spans V (that is, <B>=V)

2. B is linearly independent set.

16



Note
Any Linearly independent set B is automatically a basis for <B>.
Also since any linearly independent set S of vectors that contains a
nonzero word always contains a largest independent subset B, we
can extract from S a basis B for <S>. If S={0} then we say that the
basis of S is the empty set Q.

Theorem 2.3.1. A linear code of dimension k contains precisely 2k

codewords.

Theorem 2.3.2. Let C=<S> be the linear code generated by a subset
S of kn. Then (dimension of C)+(dimension of C⊥)=n

Theorem 2.3.3. A linear code of dimension k has precisely
1
k!

∏k−1
i=0 (2

k − 2i) different bases.

Example 2.3.1. The linear code k4 and hence
1
4!

∏3
i=0(2

4 − 2i)= 1
4!

(24-1)(24-2)(24-22)(24-23)= 840 different bases.
Any linear code contained in kn, for n≥4 which has dimension 4 also
has 840 different bases.

2.4 Matrices
An m×n matrix is a rectangular array of scalars with m rows and n columns.
If A is an m × n matrix and B is an n×p matrix, then the product
AB is the m×p matrix which has for its (i,j)th entry.

[
1 0 1 1
0 1 0 1

] 
1 0 1
0 1 1
1 0 1
1 0 0

 =
[
1 0 0
1 1 1

]

There are two types of elementary row operations which may be
performed on a matrix over K. They are:

1. interchanging two rows

2. replacing a row by itself plus another row
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Two matrices are row equivalent if one can be obtained from the
other by a sequence of elementary row operators.
A1 in a matrix M (over K) is called a leading 1 if there are no 1s to its
left in the same row, and a column of M is called a leading column
if it contains a leading 1. M is in Row Echelon Form (REF) if the
zero rows of M (if any) are all at the bottom, and each leading 1 is
to the right of the leading 1s in the rows above.
If further, each leading column contains exactly one 1, M is in Re-
duced Row Echelon Form (RREF).

Example 2.4.1. Find the REF for the matrix M below using elemen-
tary row operation.

M =


1 0 1 1
1 1 0 1
1 1 1 1
1 0 0 0



⇒


1 0 1 1
0 1 1 0
0 1 0 0
0 0 1 1

 (add row 1 to row 2, row 3 and row 4)

⇒


1 0 1 1
0 1 1 0
0 0 1 0
0 0 1 1

 (add row 2 to row 3)

⇒


1 0 1 1
0 1 1 0
0 0 1 0
0 0 0 1

 (add row 3 to row 4)

So the REF of matrix M is
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
1 0 1 1
0 1 1 0
0 0 1 0
0 0 0 1


Example 2.4.2. Find the RREF for the matrix M below using elemen-
tary row operation.

M=

1 0 1 1
1 0 1 0
1 1 0 1



→

1 0 1 1
0 0 0 1
0 1 1 0

(add row 1 to row 2 and to row 3)

→

1 0 1 1
0 1 1 0
0 0 0 1

(interchange row 2 and 3)

→

1 0 1 0
0 1 1 0
0 0 0 1

(add row 3 to row 1)

So the RREF of matrix M is 1 0 1 0
0 1 1 0
0 0 0 1


2.5 Bases for C=<S> and C⊥

We develop algorithms for finding bases for a linear code and its
dual.
Let S be a nonempty subset of Kn. The first two algorithms provide
a basis for C=<S>, the linear code generated by S.

Algorithm 2.5.1. Form the matrix A whose rows are the words in S.
Use elementary row operations to find a REF of A. Then the nonzero
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rows of the REF form a basis for C =<S>.
The algorithm works because the rows of A generate C and elemen-
tary row operations simply interchange words or replace one word
(row) with another in C giving a new set of codewords which still gen-
erates C. Clearly the nonzero rows of a matrix in REF are linearly in-
dependent.

Example 2.5.1. We find a basis for the linear code C=<S> for
S = {11101, 10110, 01011, 11010}

A=


1 1 1 0 1
1 0 1 1 0
0 1 0 1 1
1 1 0 1 0



→


1 1 1 0 1
0 1 0 1 1
0 1 0 1 1
0 0 1 1 1

 (add row 1 to row 2 and to row 4)

→


1 1 1 0 1
0 1 0 1 1
0 0 1 1 1
0 1 0 1 1

 (interchange row 3 to row 4)

→


1 1 1 0 1
0 1 0 1 1
0 0 1 1 1
0 0 0 0 0

 (add row 2 to row 4)

The last matrix is a REF of A. By Algorithm 2.5.1. {11101, 01011,
00111} is a basis for C=<S> . Another REF of A is


1 1 1 0 1
0 1 1 0 0
0 0 1 1 1
0 0 0 0 0


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So {11101, 01100, 00111} is also a basis for C=<S >. Note that Al-
gorithm 2.5.1 does not produce a unique basis for <S>, nor are the
words in the basis necessarily in the given set S.

Algorithm 2.5.2. Form the matrix A whose rows are the words in S.
Use elementary row operations to place A in RREF. Let G be the k×n
matrix consisting of all the nonzero rows of the RREF. Let X be the
k×(n-k) matrix obtained from G by deleting the leading columns of G.
Form an n×(n-k) matrix H as follows:

1. In the rows of H corresponding to the leading columns of G,
place, in order,the rows of X.

2. In the remaining n-k rows of H, place, in order, the rows of the
(n-k)×(n-k) identity matrix I.

Then the columns of H form a basis for C⊥

2.6 Generating Matrices and Encoding
The rank of a matrix over K is the number of nonzero rows in any
REF of the matrix. The dimension k of the code C is the dimension
of C, as a subspace of Kn. If C also has length n and distance d,
then we refer to C as an (n, k, d) linear code.
If C is a linear code of length n and dimension k, then any matrix
whose rows form a basis for C is called a generator matrix for C.
Note
A generator matrix for C must have k rows and n columns and it
must have rank k.

Theorem 2.6.1. A matrix G is a generator matrix for some linear
code C if and only if the rows of G are linearly independent, that is,
if and only if the rank of G is equal to the number of rows of G.

Theorem 2.6.2. If G is a generator matrix for a linear code C, then
any matrix row equivalent to G is also a generator matrix for C. In
particular, any linear code has a generator matrix in RREF.
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Example 2.6.1. We find a generator matrix for the code
C={0000,1110,0111,1001}. Using Algorithm 2.5.1,

A=


0 0 0 0
1 1 1 0
0 1 1 1
1 0 0 1

 →


1 1 1 0
0 1 1 1
1 0 0 1
0 0 0 0

 →


1 1 1 0
0 1 1 1
0 1 1 1
0 0 0 0

 →


1 1 1 0
0 1 1 1
0 0 0 0
0 0 0 0


so G=

[
1 1 1 0
0 1 1 1

]
is a generator matrix for C. By Algorithm 2.5.2,

since the RREF of A is


1 0 0 1
0 1 1 1
0 0 0 0
0 0 0 0

, G1=
[
1 0 0 1
0 1 1 1

]
is also a gener-

ator matrix for C.

2.7 Parity Check Matrices
A matrix H is called a parity-check matrix for a linear code C if
the columns of H form a basis for the dual code C. If C has length
n and dimension k, then, since the sum of the dimensions of C
and C⊥ is in any parity-check matrix for C must have n rows, n-k
columns and rank n - k.

Theorem 2.7.1. A matrix H is a parity-check matrix for some linear
code C if and only if the columns of H are linearly independent

Theorem 2.7.2. If H is a parity-check matrix for a linear code C of
length n, then C consists precisely of all words v in Kn such that vH=0.

Theorem 2.7.3. Matrices G and H are generating and parity-check
matrices, respectively, for some linear code C if and only if

1. the rows of G are linearly independent,

2. the columns of H are linearly independent,

3. the number of rows of G plus the number of columns of H equals
the number of columns of G which equals the number of rows of
H,
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4. GH=0

Theorem 2.7.4. H is a parity-check matrix of C if and only if HT is
a generator matrix for C⊥

Example 2.7.1. We find a parity check matrix for the code
C={0000,1110,0111,1001} of Example 2.6.1. There we found that

G1=
[
10 01
01 11

]
=
[
I X

]
is a generator matrix for C which is in RREF. By Algorithm 2.5.2, we
connect H

H =
[
X
I

]
=


01
11
10
01


is a parity check matrix for C. Note that vH= 00 for all words v in C.

2.8 Distance of Linear Code
The distance of a linear code is the minimum weight of any nonzero
codeword. The distance of a linear code can also be determined
from a parity-check matrix for the code.

Theorem 2.8.1. Let H be a parity-check matrix for a linear code C.
Then C has distance d if and only if any set of d-1 rows of H is linearly
independent, and at least one set of d rows of linearly dependent.

Example 2.8.1. Let C be the linear code with parity-check matrix

H =


110
011
100
010
001


By inspection it is seen that no two rows of H sum to 000, so any two
rows of H are linearly independent. But rows 1, 3, and 4, for instance
sum to 000, and hence are linearly dependent. Therefore d-1=2, so
the distance of C is d = 3.
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2.9 Cosets
If C is a linear code of length n, and if u is any word of length n,
we define the coset of C determined by u to be the set of all words
of the form v+u as v ranges over all the words in C. We denote this
coset by C+u. Thus,

C + u ={v+u|v ∈ C}.

Example 2.9.1. Let C={000, 111}, and let u= 101. Then,

C+101={000+ 101, 111+101} = {101,010}.

Note that also

C+111= {000+111, 111+111}={111,000} = C

and

C+010= {000 +010, 111+010)}={010, 101}= C+101.

Theorem 2.9.1. Let C be a linear code of length n. Let u and v be
words of length of n.

1. If u is in the coset C + v, then C + u = C + v; that is, each word
in a coset determines that coset.

2. The word u is in the coset C + u.

3. If u + v is in C, then u and v are in the same coset.

4. If u + v is not in C, then u and v are in different cosets.

5. Every word in Kn is contained in one and only one coset of C;
that is, either C + u = C + v, or C + u and C + v have no words
in common.

6. |C + u|= |C|; that is, the number of words in a coset of C is
equal to the number of words in the code C.

7. If C has dimension k, then there are exactly 2n−k different cosets
of C, and each coset contains exactly 2kwords.
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8. The code C itself is one of its cosets.

Example 2.9.2. We list the cosets of the code

C= { 0000,1011,0101,1110}

• C itself is a coset.(Theorem 2.10.1 (8))

• Every word in C will determine the coset C by (tTheorem 2.10.1
(1) and (5)), so we pick a word u in K4 not in C. For later use in
decoding, it will help to pick u of smallest weight possible. So
let’s take u = 1000. Then we get the coset,

C + 1000 ={ 1000,0011,1101,0110}.

• Now pick another word, of small weight, in K but not in C or
C+1000, say 0100. Form another coset,

C + 0100 = {0100, 1111, 0001, 1010}.

• Repeating the process with 0010 yields the coset

C + 0010 = {0010,1001,0111,1100}

• The code C has dimension k = 2. Then,

2n−k= 24−2= 22= 4

We have listed 4 cosets with 2k= 2n= 4 words.and every word
in K4 is accounted for appearing in exactly one coset.

• Also observe that 0001 + 1010= 1011 is in C, thus 0001 and
1010 are in the same coset, namely C+0100 (see (3)). On the
other hand, 0100 + 0010= 0110 is not in C, and 0100 and 0010
are in different cosets (see (4)).
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2.10 MLD for Linear Code
Let C be a linear code. Assume the codeword v in C is transmitted
and the word w is received, resulting in the error pattern u = v + w.
Then w + u = v is in C, so the error pattern u and the received word
w are in the same coset of C by (3) of Theorem 2.10.1.

Since error patterns of small weight are the most likely to occur,
here is how MLD works for a linear code C. Upon receiving the word
w, we choose a word u of least weight in the coset C + w (which must
contain w) and conclude that v = w + u was the word sent.

Example 2.10.1. Let C={0000, 1011, 0101, 1110}. The cosets of C
(Example 2.10.2) are

Suppose w= 1101 is received.

C + w = C + 1101= {1101,0110,1000,0011}

The coset C + w= C+ 1101 containing w is the second one listed.
The word of least weight in this coset is u= 1000, which we choose
as the error pattern.
We conclude that,

v = w + u = 1101 + 1000 = 0101

0101was the most likely codeword sent.

Now suppose w=1111 is received.

C + w = C + 1111={1111,0100,1010,0001}

In the coset C+w containing 1111 there are two words of smallest
weight, 0100 and 0001. Since we are doing CMLD, we arbitrarily
select one of these, say u= 0100, for the error pattern, and conclude
that v = w + u= 1111 + 0100 = 1011 was a most likely codeword sent.
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Theorem 2.10.1. Let C be a linear code of length n. Let H be a
parity-check matrix for C. Let w and u be words in Kn.

1. wH = 0 if and only if w is a codeword in C.

2. wH = uH if and only if w and u lie in the same coset of C.

3. If u is the error pattern in a received word w, then uH is the sum
of the rows of H that correspond to the positions in which errors
occurred in transmission.
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CONCLUSION

Our aim was to take a note on coding theory by its breath of cov-
erage. Coding theory is the study of properties of codes and their
respective fitness for specific applications. Codes are used for data
compression, cryptography, error detection and correction, data
transmission and data storage. Codes are studied by various scien-
tific disciplines such as information theory, electrical engineering,
mathematics, linguistics and computer science-for the purpose of
designing efficient and reliable data transmission methods. This
typically involves the removal of redundancy and the correction or
detection of errors in the transmitted data. This project work helps
us to know more about coding theory.
I have much pleasure in conveying my heart full thanks to my teach-
ers and colleagues.
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INTRODUCTION

Coding theory is the study of the properties of codes and their re-
spective fitness for specific applications. Codes are used for data
compression, cryptography, error detection and correction, data
transmission and data storage. Codes are studied by various scien-
tific disciplines—such as information theory, electrical engineering,
mathematics, linguistics, and computer science— for the purpose
of designing efficient and reliable data transmission methods. This
typically involves the removal of redundancy and the correction or
detection of errors in the transmitted data.

Coding theory, sometimes called algebraic coding theory, deals
with the design of error-correcting codes for the reliable transmis-
sion of information across noisy channels. It makes use of classical
and modern algebraic techniques involving finite fields, group the-
ory, and polynomial algebra. It has connections with other areas of
discrete mathematics, especially number theory and the theory of
experimental designs.

The history of coding theory is in 1948, Claude Shannon pub-
lished "A Mathematical Theory of Communication", an article in two
parts in the July and October issues of the Bell System Technical
Journal. This work focuses on the problem of how best to encode
the information a sender wants to transmit. In this fundamen-
tal work he used tools in probability theory, developed by Norbert
Wiener, which were in their nascent stages of being applied to com-
munication theory at that time. Shannon developed information
entropy as a measure for the uncertainty in a message while es-
sentially inventing the field of information theory.The binary Golay
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code was developed in 1949. It is an error-correcting code capable
of correcting up to three errors in each 24-bit word, and detect-
ing a fourth.

In first chapter ’Introduction to Coding Theory’ we discussed
about some basic concept of Coding Theory. It includes Basic As-
sumption where some fundamental definition and assumptions are
stated, Information Rate, The Effect of Error Correction and Detec-
tion, Weight and Distance, Maximum Likelihood Decoding, Reliabil-
ity of MLD, Error Detection and Correction. In the second chapter
’Linear Code’ we discuss about linear codes and its properties and
also some theorems. Linear Code is an important concept in Coding
Theory. Second chapter includes Independence, Basis and Dimen-
sion, Matrices, Finding Bases for C, Generating Matrices, Parity
Check Matrices, Equivalent Code, Distance of Linear Codes, Cosets,
MLD of Linear Code.
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PRELIMINARY

Binary Number
A binary number is a number expressed in the basis-2 numerical
system or binary number system, a method of which uses only two
symbols: typically "0" and "1".

Binary Addition
Binary addition is the sum of two or more binary numbers. Binary
addition rules is,
0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0

Probability
Probability is the likelihood that an event will occur and is calcu-
lated by dividing the number of favourable outcomes by the total
number of possible outcomes.

Linear Combination
Let V be a vector space and S is non empty subset of V. A vector x in
V is said to be a linear combination of elements of S if there exist a
finite number of elements y1,y2,.....,yn in S and scalars α1,α2,.....,αn

in F such that x=α1y1+α2y2+......+αnyn
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Span
Let S be a non-empty subset of a vector space V, the set of all linear
combination of S is called Span of S. It is denoted by [S] or Span(S).

Subspace
A subset W of a vector space V over a field F is called a subspace of
V if W is a vector space over F under the operation of addition and
scalar multiplication defined on V.

Subset
A set A is a subset of another set B if all element of the set A are
element of the set B.

Linearly Independent and Dependent
Let S={u1,u2,.....,un} be a subset of a vector space V, α1,α2,.....,αn be
scalars and α1u1+α2u2+......+αnun be a linear combination of S.

The set S={u1,u2,.....,un} is said to be Linearly Independent if
α1u1+α2u2+......+αnun=0 ⇒ α1=α2,.....=αn= 0 (The only solution).

If there exist a non-trivial solution for α1,α2,.....,αn, That is atleast
one αi is not zero. Then the set is called Linearly Dependent.

Dimension
Let β be a basis of a vector space V if the number of vectors in β is
n then the vector space V is called n-dimensional vector space and
written as dim(V)=n.

Elementary Row Operation
The operation that are performed on rows of a matrix.
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Rank
The number ’r’ with the following two properties is called the Rank
of the matrix.

1. There is atleast one non-zero minor of order r.

2. Every minor of order (r+1) is zero or vanish.

Cosets
Coset is subset of mathematical group consisting of all the products
obtained by multiplying fixed element of group by each of elements
of given subgroup, either on right or on left. Cosets are basic tool
in study of groups
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CHAPTER 1

INTRODUCTION TO CODING
THEORY

1.1 Coding Theory
Coding theory is the study of methods for efficient and accurate
transfer of information from one place to another.

Definition 1.1. Channel
The physical medium through which the information is transmitted is
called a channel.
Definition 1.2. Noise
Undesirable disturbance which may cause the information received
to differ from what was transmitted is called noise.

Coding theory deals with the problem of dealing and correcting
transmission error caused by noise on the channel.Rough idea of a
general information transmission system.
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The most important part of diagram is noise because without it
there would be no need for coding theory.

1.2 Basic Assumption
We state some fundamental definitions and assumptions which will
be applied in the coding theory.

Definition 1.3. Digits
The information to be sent is transmitted by a sequence of 0’s and
1’s which is called digits.

Definition 1.4. Word
Word is a sequence of digits.

Definition 1.5. Length of Word
The length of a word is the number of digits in the word.

Definition 1.6. Binary Code
A binary code is the set of words.
Eg: C= {00,01,10,11}

Definition 1.7. Block Code
A block code is code having all its words of the same length.

Definition 1.8. Codewords
The words that belong to a given code is called codewords. We denote
the number of codewords in a code c by |c|.

A word is transmitted by sending its digits one after other across
a binary channel. Each digit is transmitted mechanically, electri-
cally, magnetically or by one of two types of easily differentiated
pulses.

The codeword of length n is received as a word of length n. There
is no difficulty in identifying the beginning of the first word trans-
mitted. For example if we are using codeword of length 3 and receive
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011011001, then the word received are in order 011,011,001.

Noise is scattered randomly as opposed to being in clumps is
called bursts. That is the probability of any one digit being affected
in transmission is same as that of any other digit and is not influ-
enced by errors made in neighbouring digits.

A binary channel is symmetric, if 0 and 1 are transmitted with
equal accuracy. The reliability of Binary Symmetric Channel(BSC)
is a real number p , 0≤p ≤ 1, where p is the probability that the
digit sent is the digit received.

If p is the probability that the digit received is the digit sent and
1-p is the probability that the digit received is not the digit sent.
Then the following diagram shows how BSC operates.

Remarks

• The total number of words of length n is 2n.

• If p=1 is the perfect channel then there is no chance of a digit
being altered in transmission. If all Channel is perfect. then
there is no need of coding theory. But no channel is perfect.

• Any channel with 0≤p≤ 1
2

can be converted into a channel with
1
2
≤ p ≤ 1. We are using BSC with probability 1

2
<p<1.

• Actually a channel p=0 is uninteresting because we can change
by converting 0’s into1 and 1’s into 0. This will not help in the
development coding theory.
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1.3 Information Rate
The addition of digits to codeword may be improve error correction.
1
n
log2|c| is the information rate of a code is the number that is

designs measure the proportion of each codeword.The information
rate ranges between 0 and 1.

1.4 The Effects Of Error Correction And De-
tection

To demonstrate the dramatic effect that the addition of a parity-
check digit to a code can have in recognizing when error occur, we
consider the following codes.
Suppose that all 211 words of length 11 are codewords; then no er-
ror is detected.
Let the reliability of the channel be p = 1-10−8.
Suppose that digits are transmitted at the rate of 107 digits per sec-
ond.
The probability that the word is transmitted incorrectly is approxi-
mately 11p10(1-p), is about 11

108
.

11
108

. 107

11
= 0.1 words per second

are transmitted incorrectly without being detected. That is one
wrong word every 10 seconds, 6 a minute, 360 an hour, or 8640 a day!

Now suppose that a parity-check digit is added to each codeword,
so the number of 1’s in each of the 2048 codewords is even. Then
any single error is always detected, so at least 2 errors must occur if
a word is to be transmitted incorrectly without our knowledge. The
probability of at least 2 error occurring is 1-p12-12P11(1-p) which is
approximated by

(
12
2

)
p10(1-p)2.

p=1-10−8 → 66
1016

Now approximately
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66
1016

107

12
= 5.5×10−9

words per second are transmitted incorrectly without being detected.
That is about one error every 2000 days!

So if we are willing to reduce the information rate by lengthen-
ing the code from 11 to 12 we are very likely to know when errors
occur. To decide where these errors have actually occurred, we may
need to request the retransmission of the message. Physically this
means that either transmission must be held up until confirmation
is received or messages must be stored temporarily until retrans-
mission is requested; both alternatives may be very costly in time
or in storage space.

Therefore, at the expense of further increase in wordlength, it
may well be worth incorporating error- correction capabilities into
the code. Introducing such capabilities may also make encoding
and decoding more difficult, but will help to avoid the hidden costs
in time or space mentioned above.

One simple scheme to introduce error-correction is to form a rep-
etition code where each codeword is transmitted three times in suc-
cession. Then if at most one error is made per 33 digit codeword,
at least two of the three transmission will be correct. Then the in-
formation rate is 1

3
. So we add only 4 extra digit to each 11 digit

codeword. This produce a code with information rate 11
15

.

So it is our task to design codes with reasonable information
rates, low encoding and decoding costs and some error-correcting
or error-detecting capabilities that make the need for retransmis-
sion unlikely.

1.5 Weight And Distance
Let v be a word of length n. The Hamming weight or simply weight
of v is the number of times the digit 1 occur in v . We denote weight
of v as wt(v).
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Example 1.5.1. wt(110101)= 4

Let v and w be words of length n. Then the Hamming Distance
or simply distance between v and w is the number of positions in
which v and w disagree. We denote distance between v and w as
d(v,w).

Eg: d(01011,00111)=2
Note
The distance between v and w is same as the weight of error pattern.
That is

d(v, w) = wt(v+w).

Example 1.5.2. d(v, w) =d(11010,01101)=4
wt(v+w) = wt(11010=01101) = wt(10111) = 4

The probability formula of error pattern u=v+w ,

ϕp(v,w)= pn−wt(u)(1-p)wt(u)

1.6 Maximum Likelihood Decoding
Two basic problems of coding,

1. Encoding : We have to determine a code to use for sending our
messages.

• First we select a positive integer k, the length of each bi-
nary word corresponding to a message k, k must be cho-
sen so that |M| ≤ |kk|= 2k.

• Next we decide how many digit we need to add to each
word of length k to ensure that as many errors can be
corrected or detected as we require.

• To transmit a particular message then transmitter finds
the word of length k assigned to that of message,then
transmits the codeword of length n corresponding to that
word of length k.
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2. Decoding: A word w in knis received. Now we proceed MLD,
for decoding which word v in c was sent.

(a) Complete Maximum Likelihood Decoding: If there is one
and only one word v in c close to w than any other word in
c, we decode w as v. if there are several words in c closest
to w, then we select arbitrary one of them and conclude
that it was the codeword sent.

(b) Incomplete MLD: if there is a unique word v in c closest to
w, then we decode w as v. but if there are several words
in c, at the same distance from w, then we request a re-
transmission. In some cases if the received word w is too
far away from any word in the code, we ask for a retrans-
mission.

1.7 Reliability Of MLD
The probability that if v is sent over a BSC of probability p then
IMLD correctly concludes that v was sent. θp(C,v) is the sum of all
the probabilities θp(v,w) as w ranges over L(v). That is,

θp(C,v)=
∑

w∈L(v) θp(v, w)

where L(v) all word which are close to v. The higher the probability
is, the more correctly the word can be decoded.

1.8 Error Detection and correction

Error Detecting Code
If v in C sent and w in kn is received, then u=v+w is the error pat-
tern. Any word u in kn can occur as an error pattern, and we wish
to know which error patterns C will detect.
We say that code C detects the error pattern u if and only if v+u
is not a codeword, for every v in C. In other words, u is detected if
for any transmitted codeword v, the decoder upon receiving v+u can
recognize that it is not a codeword and hence that some error has
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occurred.

Example 1.8.1. Let C={001, 101, 110} for the error pattern u=010.
We calculate v+010 for all v in C.

001+010=011, 101+010=111, 110+010=100

None of the three words 011, 111 or 100 is in C, so C detects the error
pattern 010. On the other hand, for the error pattern u= 100,

001+100=101, 101+100=001, 110+100=010

Since at least one of these sums is in C, C does not detect the er-
ror pattern 100.

Error Correcting Code
If a word v in a code C is transmitted over BSC and w is the received
resulting in the error pattern u=v+w. Then code C corrects the error
pattern u, if for all v in C, v+u is closer to v than to any other word
in C. Also, a code is said to be a t error correcting code if it corrects
all error patterns of weight at most t and does not correct at least
one error pattern of weight t+1.

Example 1.8.2. Let C={000,111}

• Take the error pattern u=010. For v=000

d(000,v+u)=d(000,010)=1 and
d(111,v+u)=d(111,010)=2

And for v=111,

d(000,v+u)=d(000,101)=2
d(111,v+u)=d(111,101)=1

Thus C corrects the error pattern 010.

• Now take the error pattern u=110. For v=000

13



d(000,v+u)=d(000,110)=2 and
d(111,v+u)=d(111,110)=1

Since v+u is not closer to v=000 than to 111. C does not correct
the error pattern 110.
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CHAPTER 2

LINEAR CODE

2.1 Linear code
A code C is called a linear code if v+w is a word in C whenever v and
w are in C. That is, a linear code is a code which is closed under
addition of words.

Example 2.1.1. C = {000, 111} is a linear code, since all four of the sums.

000+000=000
000+111=111
111+000=111
111+111=000

are in C. But C1 = {000, 001, 101} is not a linear code, since 001 and
101 are in C1 but 001+101 is not in C1.

2.2 Two Important Subspace
The vector w is said to be a linear combination of vectors v1, v2,.......vK,
if there are scalars a1, a2,.......ak as such that,

w=a1v1+a2v2+......+akvk

The set of all linear combinations of the vectors in a given set
S={v1,v2,.......vk} is called the linear span of S, and is denoted by <S>.
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If S is empty, we define <S>= {0}.
In linear algebra it is shown that for any subset S of a vector space V,
the linear span <S> is a subspace of V, called the subspace spanned
or generated by S.

Theorem 2.2.1. For any subset S of Kn, the code C=<S> generated
by S consists precisely of the following words the zero word, all words
in S, and all sums of two or more words in S.

Example 2.2.1. Let S = {0100, 0011, 1100}. Then the code C =<S>
generated by S consists of

0000, 0100, 0100+0011=0111, 0100+0011+1100=1011,
1100, 0011,0100+1100=1000, 0011+1100=1111;

that is, C=<S>={0000,0100,0011,1100,0111,1000,111,1011}.

2.3 Independence, Basis, Dimension
The main objective is to find an efficient way to describe a linear
code without having to list all the codewords.
A set S={v1,v2,.......vk} of vectors is linearly dependent if these are
scalars a1, a2,.......ak not all zero such that,

a1v1+a2v2+......+akvk=0

Otherwise the set S is linearly independent.
The test for linear independence, then, is to form the vector equation
using arbitrary scalars. All the scalars a1, a2,.......ak to be 0, then
the set S is linearly independent. If at least one ai can be chosen to
be non-zero then S is linearly independent.
Any set of vectors containing the zero vectors is linearly dependent.
A nonempty subset B, of vectors from a vector space V is a basis for
V if both:

1. B spans V (that is, <B>=V)

2. B is linearly independent set.
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Note
Any Linearly independent set B is automatically a basis for <B>.
Also since any linearly independent set S of vectors that contains a
nonzero word always contains a largest independent subset B, we
can extract from S a basis B for <S>. If S={0} then we say that the
basis of S is the empty set Q.

Theorem 2.3.1. A linear code of dimension k contains precisely 2k

codewords.

Theorem 2.3.2. Let C=<S> be the linear code generated by a subset
S of kn. Then (dimension of C)+(dimension of C⊥)=n

Theorem 2.3.3. A linear code of dimension k has precisely
1
k!

∏k−1
i=0 (2

k − 2i) different bases.

Example 2.3.1. The linear code k4 and hence
1
4!

∏3
i=0(2

4 − 2i)= 1
4!

(24-1)(24-2)(24-22)(24-23)= 840 different bases.
Any linear code contained in kn, for n≥4 which has dimension 4 also
has 840 different bases.

2.4 Matrices
An m×n matrix is a rectangular array of scalars with m rows and n columns.
If A is an m × n matrix and B is an n×p matrix, then the product
AB is the m×p matrix which has for its (i,j)th entry.

[
1 0 1 1
0 1 0 1

] 
1 0 1
0 1 1
1 0 1
1 0 0

 =
[
1 0 0
1 1 1

]

There are two types of elementary row operations which may be
performed on a matrix over K. They are:

1. interchanging two rows

2. replacing a row by itself plus another row
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Two matrices are row equivalent if one can be obtained from the
other by a sequence of elementary row operators.
A1 in a matrix M (over K) is called a leading 1 if there are no 1s to its
left in the same row, and a column of M is called a leading column
if it contains a leading 1. M is in Row Echelon Form (REF) if the
zero rows of M (if any) are all at the bottom, and each leading 1 is
to the right of the leading 1s in the rows above.
If further, each leading column contains exactly one 1, M is in Re-
duced Row Echelon Form (RREF).

Example 2.4.1. Find the REF for the matrix M below using elemen-
tary row operation.

M =


1 0 1 1
1 1 0 1
1 1 1 1
1 0 0 0



⇒


1 0 1 1
0 1 1 0
0 1 0 0
0 0 1 1

 (add row 1 to row 2, row 3 and row 4)

⇒


1 0 1 1
0 1 1 0
0 0 1 0
0 0 1 1

 (add row 2 to row 3)

⇒


1 0 1 1
0 1 1 0
0 0 1 0
0 0 0 1

 (add row 3 to row 4)

So the REF of matrix M is
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
1 0 1 1
0 1 1 0
0 0 1 0
0 0 0 1


Example 2.4.2. Find the RREF for the matrix M below using elemen-
tary row operation.

M=

1 0 1 1
1 0 1 0
1 1 0 1



→

1 0 1 1
0 0 0 1
0 1 1 0

(add row 1 to row 2 and to row 3)

→

1 0 1 1
0 1 1 0
0 0 0 1

(interchange row 2 and 3)

→

1 0 1 0
0 1 1 0
0 0 0 1

(add row 3 to row 1)

So the RREF of matrix M is 1 0 1 0
0 1 1 0
0 0 0 1


2.5 Bases for C=<S> and C⊥

We develop algorithms for finding bases for a linear code and its
dual.
Let S be a nonempty subset of Kn. The first two algorithms provide
a basis for C=<S>, the linear code generated by S.

Algorithm 2.5.1. Form the matrix A whose rows are the words in S.
Use elementary row operations to find a REF of A. Then the nonzero
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rows of the REF form a basis for C =<S>.
The algorithm works because the rows of A generate C and elemen-
tary row operations simply interchange words or replace one word
(row) with another in C giving a new set of codewords which still gen-
erates C. Clearly the nonzero rows of a matrix in REF are linearly in-
dependent.

Example 2.5.1. We find a basis for the linear code C=<S> for
S = {11101, 10110, 01011, 11010}

A=


1 1 1 0 1
1 0 1 1 0
0 1 0 1 1
1 1 0 1 0



→


1 1 1 0 1
0 1 0 1 1
0 1 0 1 1
0 0 1 1 1

 (add row 1 to row 2 and to row 4)

→


1 1 1 0 1
0 1 0 1 1
0 0 1 1 1
0 1 0 1 1

 (interchange row 3 to row 4)

→


1 1 1 0 1
0 1 0 1 1
0 0 1 1 1
0 0 0 0 0

 (add row 2 to row 4)

The last matrix is a REF of A. By Algorithm 2.5.1. {11101, 01011,
00111} is a basis for C=<S> . Another REF of A is


1 1 1 0 1
0 1 1 0 0
0 0 1 1 1
0 0 0 0 0


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So {11101, 01100, 00111} is also a basis for C=<S >. Note that Al-
gorithm 2.5.1 does not produce a unique basis for <S>, nor are the
words in the basis necessarily in the given set S.

Algorithm 2.5.2. Form the matrix A whose rows are the words in S.
Use elementary row operations to place A in RREF. Let G be the k×n
matrix consisting of all the nonzero rows of the RREF. Let X be the
k×(n-k) matrix obtained from G by deleting the leading columns of G.
Form an n×(n-k) matrix H as follows:

1. In the rows of H corresponding to the leading columns of G,
place, in order,the rows of X.

2. In the remaining n-k rows of H, place, in order, the rows of the
(n-k)×(n-k) identity matrix I.

Then the columns of H form a basis for C⊥

2.6 Generating Matrices and Encoding
The rank of a matrix over K is the number of nonzero rows in any
REF of the matrix. The dimension k of the code C is the dimension
of C, as a subspace of Kn. If C also has length n and distance d,
then we refer to C as an (n, k, d) linear code.
If C is a linear code of length n and dimension k, then any matrix
whose rows form a basis for C is called a generator matrix for C.
Note
A generator matrix for C must have k rows and n columns and it
must have rank k.

Theorem 2.6.1. A matrix G is a generator matrix for some linear
code C if and only if the rows of G are linearly independent, that is,
if and only if the rank of G is equal to the number of rows of G.

Theorem 2.6.2. If G is a generator matrix for a linear code C, then
any matrix row equivalent to G is also a generator matrix for C. In
particular, any linear code has a generator matrix in RREF.
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Example 2.6.1. We find a generator matrix for the code
C={0000,1110,0111,1001}. Using Algorithm 2.5.1,

A=


0 0 0 0
1 1 1 0
0 1 1 1
1 0 0 1

 →


1 1 1 0
0 1 1 1
1 0 0 1
0 0 0 0

 →


1 1 1 0
0 1 1 1
0 1 1 1
0 0 0 0

 →


1 1 1 0
0 1 1 1
0 0 0 0
0 0 0 0


so G=

[
1 1 1 0
0 1 1 1

]
is a generator matrix for C. By Algorithm 2.5.2,

since the RREF of A is


1 0 0 1
0 1 1 1
0 0 0 0
0 0 0 0

, G1=
[
1 0 0 1
0 1 1 1

]
is also a gener-

ator matrix for C.

2.7 Parity Check Matrices
A matrix H is called a parity-check matrix for a linear code C if
the columns of H form a basis for the dual code C. If C has length
n and dimension k, then, since the sum of the dimensions of C
and C⊥ is in any parity-check matrix for C must have n rows, n-k
columns and rank n - k.

Theorem 2.7.1. A matrix H is a parity-check matrix for some linear
code C if and only if the columns of H are linearly independent

Theorem 2.7.2. If H is a parity-check matrix for a linear code C of
length n, then C consists precisely of all words v in Kn such that vH=0.

Theorem 2.7.3. Matrices G and H are generating and parity-check
matrices, respectively, for some linear code C if and only if

1. the rows of G are linearly independent,

2. the columns of H are linearly independent,

3. the number of rows of G plus the number of columns of H equals
the number of columns of G which equals the number of rows of
H,
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4. GH=0

Theorem 2.7.4. H is a parity-check matrix of C if and only if HT is
a generator matrix for C⊥

Example 2.7.1. We find a parity check matrix for the code
C={0000,1110,0111,1001} of Example 2.6.1. There we found that

G1=
[
10 01
01 11

]
=
[
I X

]
is a generator matrix for C which is in RREF. By Algorithm 2.5.2, we
connect H

H =
[
X
I

]
=


01
11
10
01


is a parity check matrix for C. Note that vH= 00 for all words v in C.

2.8 Distance of Linear Code
The distance of a linear code is the minimum weight of any nonzero
codeword. The distance of a linear code can also be determined
from a parity-check matrix for the code.

Theorem 2.8.1. Let H be a parity-check matrix for a linear code C.
Then C has distance d if and only if any set of d-1 rows of H is linearly
independent, and at least one set of d rows of linearly dependent.

Example 2.8.1. Let C be the linear code with parity-check matrix

H =


110
011
100
010
001


By inspection it is seen that no two rows of H sum to 000, so any two
rows of H are linearly independent. But rows 1, 3, and 4, for instance
sum to 000, and hence are linearly dependent. Therefore d-1=2, so
the distance of C is d = 3.
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2.9 Cosets
If C is a linear code of length n, and if u is any word of length n,
we define the coset of C determined by u to be the set of all words
of the form v+u as v ranges over all the words in C. We denote this
coset by C+u. Thus,

C + u ={v+u|v ∈ C}.

Example 2.9.1. Let C={000, 111}, and let u= 101. Then,

C+101={000+ 101, 111+101} = {101,010}.

Note that also

C+111= {000+111, 111+111}={111,000} = C

and

C+010= {000 +010, 111+010)}={010, 101}= C+101.

Theorem 2.9.1. Let C be a linear code of length n. Let u and v be
words of length of n.

1. If u is in the coset C + v, then C + u = C + v; that is, each word
in a coset determines that coset.

2. The word u is in the coset C + u.

3. If u + v is in C, then u and v are in the same coset.

4. If u + v is not in C, then u and v are in different cosets.

5. Every word in Kn is contained in one and only one coset of C;
that is, either C + u = C + v, or C + u and C + v have no words
in common.

6. |C + u|= |C|; that is, the number of words in a coset of C is
equal to the number of words in the code C.

7. If C has dimension k, then there are exactly 2n−k different cosets
of C, and each coset contains exactly 2kwords.
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8. The code C itself is one of its cosets.

Example 2.9.2. We list the cosets of the code

C= { 0000,1011,0101,1110}

• C itself is a coset.(Theorem 2.10.1 (8))

• Every word in C will determine the coset C by (tTheorem 2.10.1
(1) and (5)), so we pick a word u in K4 not in C. For later use in
decoding, it will help to pick u of smallest weight possible. So
let’s take u = 1000. Then we get the coset,

C + 1000 ={ 1000,0011,1101,0110}.

• Now pick another word, of small weight, in K but not in C or
C+1000, say 0100. Form another coset,

C + 0100 = {0100, 1111, 0001, 1010}.

• Repeating the process with 0010 yields the coset

C + 0010 = {0010,1001,0111,1100}

• The code C has dimension k = 2. Then,

2n−k= 24−2= 22= 4

We have listed 4 cosets with 2k= 2n= 4 words.and every word
in K4 is accounted for appearing in exactly one coset.

• Also observe that 0001 + 1010= 1011 is in C, thus 0001 and
1010 are in the same coset, namely C+0100 (see (3)). On the
other hand, 0100 + 0010= 0110 is not in C, and 0100 and 0010
are in different cosets (see (4)).
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2.10 MLD for Linear Code
Let C be a linear code. Assume the codeword v in C is transmitted
and the word w is received, resulting in the error pattern u = v + w.
Then w + u = v is in C, so the error pattern u and the received word
w are in the same coset of C by (3) of Theorem 2.10.1.

Since error patterns of small weight are the most likely to occur,
here is how MLD works for a linear code C. Upon receiving the word
w, we choose a word u of least weight in the coset C + w (which must
contain w) and conclude that v = w + u was the word sent.

Example 2.10.1. Let C={0000, 1011, 0101, 1110}. The cosets of C
(Example 2.10.2) are

Suppose w= 1101 is received.

C + w = C + 1101= {1101,0110,1000,0011}

The coset C + w= C+ 1101 containing w is the second one listed.
The word of least weight in this coset is u= 1000, which we choose
as the error pattern.
We conclude that,

v = w + u = 1101 + 1000 = 0101

0101was the most likely codeword sent.

Now suppose w=1111 is received.

C + w = C + 1111={1111,0100,1010,0001}

In the coset C+w containing 1111 there are two words of smallest
weight, 0100 and 0001. Since we are doing CMLD, we arbitrarily
select one of these, say u= 0100, for the error pattern, and conclude
that v = w + u= 1111 + 0100 = 1011 was a most likely codeword sent.
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Theorem 2.10.1. Let C be a linear code of length n. Let H be a
parity-check matrix for C. Let w and u be words in Kn.

1. wH = 0 if and only if w is a codeword in C.

2. wH = uH if and only if w and u lie in the same coset of C.

3. If u is the error pattern in a received word w, then uH is the sum
of the rows of H that correspond to the positions in which errors
occurred in transmission.
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CONCLUSION

Our aim was to take a note on coding theory by its breath of cov-
erage. Coding theory is the study of properties of codes and their
respective fitness for specific applications. Codes are used for data
compression, cryptography, error detection and correction, data
transmission and data storage. Codes are studied by various scien-
tific disciplines such as information theory, electrical engineering,
mathematics, linguistics and computer science-for the purpose of
designing efficient and reliable data transmission methods. This
typically involves the removal of redundancy and the correction or
detection of errors in the transmitted data. This project work helps
us to know more about coding theory.
I have much pleasure in conveying my heart full thanks to my teach-
ers and colleagues.
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INTRODUCTION

Coding theory is the study of the properties of codes and their re-
spective fitness for specific applications. Codes are used for data
compression, cryptography, error detection and correction, data
transmission and data storage. Codes are studied by various scien-
tific disciplines—such as information theory, electrical engineering,
mathematics, linguistics, and computer science— for the purpose
of designing efficient and reliable data transmission methods. This
typically involves the removal of redundancy and the correction or
detection of errors in the transmitted data.

Coding theory, sometimes called algebraic coding theory, deals
with the design of error-correcting codes for the reliable transmis-
sion of information across noisy channels. It makes use of classical
and modern algebraic techniques involving finite fields, group the-
ory, and polynomial algebra. It has connections with other areas of
discrete mathematics, especially number theory and the theory of
experimental designs.

The history of coding theory is in 1948, Claude Shannon pub-
lished "A Mathematical Theory of Communication", an article in two
parts in the July and October issues of the Bell System Technical
Journal. This work focuses on the problem of how best to encode
the information a sender wants to transmit. In this fundamen-
tal work he used tools in probability theory, developed by Norbert
Wiener, which were in their nascent stages of being applied to com-
munication theory at that time. Shannon developed information
entropy as a measure for the uncertainty in a message while es-
sentially inventing the field of information theory.The binary Golay
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code was developed in 1949. It is an error-correcting code capable
of correcting up to three errors in each 24-bit word, and detect-
ing a fourth.

In first chapter ’Introduction to Coding Theory’ we discussed
about some basic concept of Coding Theory. It includes Basic As-
sumption where some fundamental definition and assumptions are
stated, Information Rate, The Effect of Error Correction and Detec-
tion, Weight and Distance, Maximum Likelihood Decoding, Reliabil-
ity of MLD, Error Detection and Correction. In the second chapter
’Linear Code’ we discuss about linear codes and its properties and
also some theorems. Linear Code is an important concept in Coding
Theory. Second chapter includes Independence, Basis and Dimen-
sion, Matrices, Finding Bases for C, Generating Matrices, Parity
Check Matrices, Equivalent Code, Distance of Linear Codes, Cosets,
MLD of Linear Code.
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PRELIMINARY

Binary Number
A binary number is a number expressed in the basis-2 numerical
system or binary number system, a method of which uses only two
symbols: typically "0" and "1".

Binary Addition
Binary addition is the sum of two or more binary numbers. Binary
addition rules is,
0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0

Probability
Probability is the likelihood that an event will occur and is calcu-
lated by dividing the number of favourable outcomes by the total
number of possible outcomes.

Linear Combination
Let V be a vector space and S is non empty subset of V. A vector x in
V is said to be a linear combination of elements of S if there exist a
finite number of elements y1,y2,.....,yn in S and scalars α1,α2,.....,αn

in F such that x=α1y1+α2y2+......+αnyn
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Span
Let S be a non-empty subset of a vector space V, the set of all linear
combination of S is called Span of S. It is denoted by [S] or Span(S).

Subspace
A subset W of a vector space V over a field F is called a subspace of
V if W is a vector space over F under the operation of addition and
scalar multiplication defined on V.

Subset
A set A is a subset of another set B if all element of the set A are
element of the set B.

Linearly Independent and Dependent
Let S={u1,u2,.....,un} be a subset of a vector space V, α1,α2,.....,αn be
scalars and α1u1+α2u2+......+αnun be a linear combination of S.

The set S={u1,u2,.....,un} is said to be Linearly Independent if
α1u1+α2u2+......+αnun=0 ⇒ α1=α2,.....=αn= 0 (The only solution).

If there exist a non-trivial solution for α1,α2,.....,αn, That is atleast
one αi is not zero. Then the set is called Linearly Dependent.

Dimension
Let β be a basis of a vector space V if the number of vectors in β is
n then the vector space V is called n-dimensional vector space and
written as dim(V)=n.

Elementary Row Operation
The operation that are performed on rows of a matrix.
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Rank
The number ’r’ with the following two properties is called the Rank
of the matrix.

1. There is atleast one non-zero minor of order r.

2. Every minor of order (r+1) is zero or vanish.

Cosets
Coset is subset of mathematical group consisting of all the products
obtained by multiplying fixed element of group by each of elements
of given subgroup, either on right or on left. Cosets are basic tool
in study of groups
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CHAPTER 1

INTRODUCTION TO CODING
THEORY

1.1 Coding Theory
Coding theory is the study of methods for efficient and accurate
transfer of information from one place to another.

Definition 1.1. Channel
The physical medium through which the information is transmitted is
called a channel.
Definition 1.2. Noise
Undesirable disturbance which may cause the information received
to differ from what was transmitted is called noise.

Coding theory deals with the problem of dealing and correcting
transmission error caused by noise on the channel.Rough idea of a
general information transmission system.
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The most important part of diagram is noise because without it
there would be no need for coding theory.

1.2 Basic Assumption
We state some fundamental definitions and assumptions which will
be applied in the coding theory.

Definition 1.3. Digits
The information to be sent is transmitted by a sequence of 0’s and
1’s which is called digits.

Definition 1.4. Word
Word is a sequence of digits.

Definition 1.5. Length of Word
The length of a word is the number of digits in the word.

Definition 1.6. Binary Code
A binary code is the set of words.
Eg: C= {00,01,10,11}

Definition 1.7. Block Code
A block code is code having all its words of the same length.

Definition 1.8. Codewords
The words that belong to a given code is called codewords. We denote
the number of codewords in a code c by |c|.

A word is transmitted by sending its digits one after other across
a binary channel. Each digit is transmitted mechanically, electri-
cally, magnetically or by one of two types of easily differentiated
pulses.

The codeword of length n is received as a word of length n. There
is no difficulty in identifying the beginning of the first word trans-
mitted. For example if we are using codeword of length 3 and receive
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011011001, then the word received are in order 011,011,001.

Noise is scattered randomly as opposed to being in clumps is
called bursts. That is the probability of any one digit being affected
in transmission is same as that of any other digit and is not influ-
enced by errors made in neighbouring digits.

A binary channel is symmetric, if 0 and 1 are transmitted with
equal accuracy. The reliability of Binary Symmetric Channel(BSC)
is a real number p , 0≤p ≤ 1, where p is the probability that the
digit sent is the digit received.

If p is the probability that the digit received is the digit sent and
1-p is the probability that the digit received is not the digit sent.
Then the following diagram shows how BSC operates.

Remarks

• The total number of words of length n is 2n.

• If p=1 is the perfect channel then there is no chance of a digit
being altered in transmission. If all Channel is perfect. then
there is no need of coding theory. But no channel is perfect.

• Any channel with 0≤p≤ 1
2

can be converted into a channel with
1
2
≤ p ≤ 1. We are using BSC with probability 1

2
<p<1.

• Actually a channel p=0 is uninteresting because we can change
by converting 0’s into1 and 1’s into 0. This will not help in the
development coding theory.
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1.3 Information Rate
The addition of digits to codeword may be improve error correction.
1
n
log2|c| is the information rate of a code is the number that is

designs measure the proportion of each codeword.The information
rate ranges between 0 and 1.

1.4 The Effects Of Error Correction And De-
tection

To demonstrate the dramatic effect that the addition of a parity-
check digit to a code can have in recognizing when error occur, we
consider the following codes.
Suppose that all 211 words of length 11 are codewords; then no er-
ror is detected.
Let the reliability of the channel be p = 1-10−8.
Suppose that digits are transmitted at the rate of 107 digits per sec-
ond.
The probability that the word is transmitted incorrectly is approxi-
mately 11p10(1-p), is about 11

108
.

11
108

. 107

11
= 0.1 words per second

are transmitted incorrectly without being detected. That is one
wrong word every 10 seconds, 6 a minute, 360 an hour, or 8640 a day!

Now suppose that a parity-check digit is added to each codeword,
so the number of 1’s in each of the 2048 codewords is even. Then
any single error is always detected, so at least 2 errors must occur if
a word is to be transmitted incorrectly without our knowledge. The
probability of at least 2 error occurring is 1-p12-12P11(1-p) which is
approximated by

(
12
2

)
p10(1-p)2.

p=1-10−8 → 66
1016

Now approximately
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66
1016

107

12
= 5.5×10−9

words per second are transmitted incorrectly without being detected.
That is about one error every 2000 days!

So if we are willing to reduce the information rate by lengthen-
ing the code from 11 to 12 we are very likely to know when errors
occur. To decide where these errors have actually occurred, we may
need to request the retransmission of the message. Physically this
means that either transmission must be held up until confirmation
is received or messages must be stored temporarily until retrans-
mission is requested; both alternatives may be very costly in time
or in storage space.

Therefore, at the expense of further increase in wordlength, it
may well be worth incorporating error- correction capabilities into
the code. Introducing such capabilities may also make encoding
and decoding more difficult, but will help to avoid the hidden costs
in time or space mentioned above.

One simple scheme to introduce error-correction is to form a rep-
etition code where each codeword is transmitted three times in suc-
cession. Then if at most one error is made per 33 digit codeword,
at least two of the three transmission will be correct. Then the in-
formation rate is 1

3
. So we add only 4 extra digit to each 11 digit

codeword. This produce a code with information rate 11
15

.

So it is our task to design codes with reasonable information
rates, low encoding and decoding costs and some error-correcting
or error-detecting capabilities that make the need for retransmis-
sion unlikely.

1.5 Weight And Distance
Let v be a word of length n. The Hamming weight or simply weight
of v is the number of times the digit 1 occur in v . We denote weight
of v as wt(v).
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Example 1.5.1. wt(110101)= 4

Let v and w be words of length n. Then the Hamming Distance
or simply distance between v and w is the number of positions in
which v and w disagree. We denote distance between v and w as
d(v,w).

Eg: d(01011,00111)=2
Note
The distance between v and w is same as the weight of error pattern.
That is

d(v, w) = wt(v+w).

Example 1.5.2. d(v, w) =d(11010,01101)=4
wt(v+w) = wt(11010=01101) = wt(10111) = 4

The probability formula of error pattern u=v+w ,

ϕp(v,w)= pn−wt(u)(1-p)wt(u)

1.6 Maximum Likelihood Decoding
Two basic problems of coding,

1. Encoding : We have to determine a code to use for sending our
messages.

• First we select a positive integer k, the length of each bi-
nary word corresponding to a message k, k must be cho-
sen so that |M| ≤ |kk|= 2k.

• Next we decide how many digit we need to add to each
word of length k to ensure that as many errors can be
corrected or detected as we require.

• To transmit a particular message then transmitter finds
the word of length k assigned to that of message,then
transmits the codeword of length n corresponding to that
word of length k.
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2. Decoding: A word w in knis received. Now we proceed MLD,
for decoding which word v in c was sent.

(a) Complete Maximum Likelihood Decoding: If there is one
and only one word v in c close to w than any other word in
c, we decode w as v. if there are several words in c closest
to w, then we select arbitrary one of them and conclude
that it was the codeword sent.

(b) Incomplete MLD: if there is a unique word v in c closest to
w, then we decode w as v. but if there are several words
in c, at the same distance from w, then we request a re-
transmission. In some cases if the received word w is too
far away from any word in the code, we ask for a retrans-
mission.

1.7 Reliability Of MLD
The probability that if v is sent over a BSC of probability p then
IMLD correctly concludes that v was sent. θp(C,v) is the sum of all
the probabilities θp(v,w) as w ranges over L(v). That is,

θp(C,v)=
∑

w∈L(v) θp(v, w)

where L(v) all word which are close to v. The higher the probability
is, the more correctly the word can be decoded.

1.8 Error Detection and correction

Error Detecting Code
If v in C sent and w in kn is received, then u=v+w is the error pat-
tern. Any word u in kn can occur as an error pattern, and we wish
to know which error patterns C will detect.
We say that code C detects the error pattern u if and only if v+u
is not a codeword, for every v in C. In other words, u is detected if
for any transmitted codeword v, the decoder upon receiving v+u can
recognize that it is not a codeword and hence that some error has
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occurred.

Example 1.8.1. Let C={001, 101, 110} for the error pattern u=010.
We calculate v+010 for all v in C.

001+010=011, 101+010=111, 110+010=100

None of the three words 011, 111 or 100 is in C, so C detects the error
pattern 010. On the other hand, for the error pattern u= 100,

001+100=101, 101+100=001, 110+100=010

Since at least one of these sums is in C, C does not detect the er-
ror pattern 100.

Error Correcting Code
If a word v in a code C is transmitted over BSC and w is the received
resulting in the error pattern u=v+w. Then code C corrects the error
pattern u, if for all v in C, v+u is closer to v than to any other word
in C. Also, a code is said to be a t error correcting code if it corrects
all error patterns of weight at most t and does not correct at least
one error pattern of weight t+1.

Example 1.8.2. Let C={000,111}

• Take the error pattern u=010. For v=000

d(000,v+u)=d(000,010)=1 and
d(111,v+u)=d(111,010)=2

And for v=111,

d(000,v+u)=d(000,101)=2
d(111,v+u)=d(111,101)=1

Thus C corrects the error pattern 010.

• Now take the error pattern u=110. For v=000

13



d(000,v+u)=d(000,110)=2 and
d(111,v+u)=d(111,110)=1

Since v+u is not closer to v=000 than to 111. C does not correct
the error pattern 110.
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CHAPTER 2

LINEAR CODE

2.1 Linear code
A code C is called a linear code if v+w is a word in C whenever v and
w are in C. That is, a linear code is a code which is closed under
addition of words.

Example 2.1.1. C = {000, 111} is a linear code, since all four of the sums.

000+000=000
000+111=111
111+000=111
111+111=000

are in C. But C1 = {000, 001, 101} is not a linear code, since 001 and
101 are in C1 but 001+101 is not in C1.

2.2 Two Important Subspace
The vector w is said to be a linear combination of vectors v1, v2,.......vK,
if there are scalars a1, a2,.......ak as such that,

w=a1v1+a2v2+......+akvk

The set of all linear combinations of the vectors in a given set
S={v1,v2,.......vk} is called the linear span of S, and is denoted by <S>.
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If S is empty, we define <S>= {0}.
In linear algebra it is shown that for any subset S of a vector space V,
the linear span <S> is a subspace of V, called the subspace spanned
or generated by S.

Theorem 2.2.1. For any subset S of Kn, the code C=<S> generated
by S consists precisely of the following words the zero word, all words
in S, and all sums of two or more words in S.

Example 2.2.1. Let S = {0100, 0011, 1100}. Then the code C =<S>
generated by S consists of

0000, 0100, 0100+0011=0111, 0100+0011+1100=1011,
1100, 0011,0100+1100=1000, 0011+1100=1111;

that is, C=<S>={0000,0100,0011,1100,0111,1000,111,1011}.

2.3 Independence, Basis, Dimension
The main objective is to find an efficient way to describe a linear
code without having to list all the codewords.
A set S={v1,v2,.......vk} of vectors is linearly dependent if these are
scalars a1, a2,.......ak not all zero such that,

a1v1+a2v2+......+akvk=0

Otherwise the set S is linearly independent.
The test for linear independence, then, is to form the vector equation
using arbitrary scalars. All the scalars a1, a2,.......ak to be 0, then
the set S is linearly independent. If at least one ai can be chosen to
be non-zero then S is linearly independent.
Any set of vectors containing the zero vectors is linearly dependent.
A nonempty subset B, of vectors from a vector space V is a basis for
V if both:

1. B spans V (that is, <B>=V)

2. B is linearly independent set.
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Note
Any Linearly independent set B is automatically a basis for <B>.
Also since any linearly independent set S of vectors that contains a
nonzero word always contains a largest independent subset B, we
can extract from S a basis B for <S>. If S={0} then we say that the
basis of S is the empty set Q.

Theorem 2.3.1. A linear code of dimension k contains precisely 2k

codewords.

Theorem 2.3.2. Let C=<S> be the linear code generated by a subset
S of kn. Then (dimension of C)+(dimension of C⊥)=n

Theorem 2.3.3. A linear code of dimension k has precisely
1
k!

∏k−1
i=0 (2

k − 2i) different bases.

Example 2.3.1. The linear code k4 and hence
1
4!

∏3
i=0(2

4 − 2i)= 1
4!

(24-1)(24-2)(24-22)(24-23)= 840 different bases.
Any linear code contained in kn, for n≥4 which has dimension 4 also
has 840 different bases.

2.4 Matrices
An m×n matrix is a rectangular array of scalars with m rows and n columns.
If A is an m × n matrix and B is an n×p matrix, then the product
AB is the m×p matrix which has for its (i,j)th entry.

[
1 0 1 1
0 1 0 1

] 
1 0 1
0 1 1
1 0 1
1 0 0

 =
[
1 0 0
1 1 1

]

There are two types of elementary row operations which may be
performed on a matrix over K. They are:

1. interchanging two rows

2. replacing a row by itself plus another row
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Two matrices are row equivalent if one can be obtained from the
other by a sequence of elementary row operators.
A1 in a matrix M (over K) is called a leading 1 if there are no 1s to its
left in the same row, and a column of M is called a leading column
if it contains a leading 1. M is in Row Echelon Form (REF) if the
zero rows of M (if any) are all at the bottom, and each leading 1 is
to the right of the leading 1s in the rows above.
If further, each leading column contains exactly one 1, M is in Re-
duced Row Echelon Form (RREF).

Example 2.4.1. Find the REF for the matrix M below using elemen-
tary row operation.

M =


1 0 1 1
1 1 0 1
1 1 1 1
1 0 0 0



⇒


1 0 1 1
0 1 1 0
0 1 0 0
0 0 1 1

 (add row 1 to row 2, row 3 and row 4)

⇒


1 0 1 1
0 1 1 0
0 0 1 0
0 0 1 1

 (add row 2 to row 3)

⇒


1 0 1 1
0 1 1 0
0 0 1 0
0 0 0 1

 (add row 3 to row 4)

So the REF of matrix M is
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
1 0 1 1
0 1 1 0
0 0 1 0
0 0 0 1


Example 2.4.2. Find the RREF for the matrix M below using elemen-
tary row operation.

M=

1 0 1 1
1 0 1 0
1 1 0 1



→

1 0 1 1
0 0 0 1
0 1 1 0

(add row 1 to row 2 and to row 3)

→

1 0 1 1
0 1 1 0
0 0 0 1

(interchange row 2 and 3)

→

1 0 1 0
0 1 1 0
0 0 0 1

(add row 3 to row 1)

So the RREF of matrix M is 1 0 1 0
0 1 1 0
0 0 0 1


2.5 Bases for C=<S> and C⊥

We develop algorithms for finding bases for a linear code and its
dual.
Let S be a nonempty subset of Kn. The first two algorithms provide
a basis for C=<S>, the linear code generated by S.

Algorithm 2.5.1. Form the matrix A whose rows are the words in S.
Use elementary row operations to find a REF of A. Then the nonzero
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rows of the REF form a basis for C =<S>.
The algorithm works because the rows of A generate C and elemen-
tary row operations simply interchange words or replace one word
(row) with another in C giving a new set of codewords which still gen-
erates C. Clearly the nonzero rows of a matrix in REF are linearly in-
dependent.

Example 2.5.1. We find a basis for the linear code C=<S> for
S = {11101, 10110, 01011, 11010}

A=


1 1 1 0 1
1 0 1 1 0
0 1 0 1 1
1 1 0 1 0



→


1 1 1 0 1
0 1 0 1 1
0 1 0 1 1
0 0 1 1 1

 (add row 1 to row 2 and to row 4)

→


1 1 1 0 1
0 1 0 1 1
0 0 1 1 1
0 1 0 1 1

 (interchange row 3 to row 4)

→


1 1 1 0 1
0 1 0 1 1
0 0 1 1 1
0 0 0 0 0

 (add row 2 to row 4)

The last matrix is a REF of A. By Algorithm 2.5.1. {11101, 01011,
00111} is a basis for C=<S> . Another REF of A is


1 1 1 0 1
0 1 1 0 0
0 0 1 1 1
0 0 0 0 0


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So {11101, 01100, 00111} is also a basis for C=<S >. Note that Al-
gorithm 2.5.1 does not produce a unique basis for <S>, nor are the
words in the basis necessarily in the given set S.

Algorithm 2.5.2. Form the matrix A whose rows are the words in S.
Use elementary row operations to place A in RREF. Let G be the k×n
matrix consisting of all the nonzero rows of the RREF. Let X be the
k×(n-k) matrix obtained from G by deleting the leading columns of G.
Form an n×(n-k) matrix H as follows:

1. In the rows of H corresponding to the leading columns of G,
place, in order,the rows of X.

2. In the remaining n-k rows of H, place, in order, the rows of the
(n-k)×(n-k) identity matrix I.

Then the columns of H form a basis for C⊥

2.6 Generating Matrices and Encoding
The rank of a matrix over K is the number of nonzero rows in any
REF of the matrix. The dimension k of the code C is the dimension
of C, as a subspace of Kn. If C also has length n and distance d,
then we refer to C as an (n, k, d) linear code.
If C is a linear code of length n and dimension k, then any matrix
whose rows form a basis for C is called a generator matrix for C.
Note
A generator matrix for C must have k rows and n columns and it
must have rank k.

Theorem 2.6.1. A matrix G is a generator matrix for some linear
code C if and only if the rows of G are linearly independent, that is,
if and only if the rank of G is equal to the number of rows of G.

Theorem 2.6.2. If G is a generator matrix for a linear code C, then
any matrix row equivalent to G is also a generator matrix for C. In
particular, any linear code has a generator matrix in RREF.
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Example 2.6.1. We find a generator matrix for the code
C={0000,1110,0111,1001}. Using Algorithm 2.5.1,

A=


0 0 0 0
1 1 1 0
0 1 1 1
1 0 0 1

 →


1 1 1 0
0 1 1 1
1 0 0 1
0 0 0 0

 →


1 1 1 0
0 1 1 1
0 1 1 1
0 0 0 0

 →


1 1 1 0
0 1 1 1
0 0 0 0
0 0 0 0


so G=

[
1 1 1 0
0 1 1 1

]
is a generator matrix for C. By Algorithm 2.5.2,

since the RREF of A is


1 0 0 1
0 1 1 1
0 0 0 0
0 0 0 0

, G1=
[
1 0 0 1
0 1 1 1

]
is also a gener-

ator matrix for C.

2.7 Parity Check Matrices
A matrix H is called a parity-check matrix for a linear code C if
the columns of H form a basis for the dual code C. If C has length
n and dimension k, then, since the sum of the dimensions of C
and C⊥ is in any parity-check matrix for C must have n rows, n-k
columns and rank n - k.

Theorem 2.7.1. A matrix H is a parity-check matrix for some linear
code C if and only if the columns of H are linearly independent

Theorem 2.7.2. If H is a parity-check matrix for a linear code C of
length n, then C consists precisely of all words v in Kn such that vH=0.

Theorem 2.7.3. Matrices G and H are generating and parity-check
matrices, respectively, for some linear code C if and only if

1. the rows of G are linearly independent,

2. the columns of H are linearly independent,

3. the number of rows of G plus the number of columns of H equals
the number of columns of G which equals the number of rows of
H,
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4. GH=0

Theorem 2.7.4. H is a parity-check matrix of C if and only if HT is
a generator matrix for C⊥

Example 2.7.1. We find a parity check matrix for the code
C={0000,1110,0111,1001} of Example 2.6.1. There we found that

G1=
[
10 01
01 11

]
=
[
I X

]
is a generator matrix for C which is in RREF. By Algorithm 2.5.2, we
connect H

H =
[
X
I

]
=


01
11
10
01


is a parity check matrix for C. Note that vH= 00 for all words v in C.

2.8 Distance of Linear Code
The distance of a linear code is the minimum weight of any nonzero
codeword. The distance of a linear code can also be determined
from a parity-check matrix for the code.

Theorem 2.8.1. Let H be a parity-check matrix for a linear code C.
Then C has distance d if and only if any set of d-1 rows of H is linearly
independent, and at least one set of d rows of linearly dependent.

Example 2.8.1. Let C be the linear code with parity-check matrix

H =


110
011
100
010
001


By inspection it is seen that no two rows of H sum to 000, so any two
rows of H are linearly independent. But rows 1, 3, and 4, for instance
sum to 000, and hence are linearly dependent. Therefore d-1=2, so
the distance of C is d = 3.
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2.9 Cosets
If C is a linear code of length n, and if u is any word of length n,
we define the coset of C determined by u to be the set of all words
of the form v+u as v ranges over all the words in C. We denote this
coset by C+u. Thus,

C + u ={v+u|v ∈ C}.

Example 2.9.1. Let C={000, 111}, and let u= 101. Then,

C+101={000+ 101, 111+101} = {101,010}.

Note that also

C+111= {000+111, 111+111}={111,000} = C

and

C+010= {000 +010, 111+010)}={010, 101}= C+101.

Theorem 2.9.1. Let C be a linear code of length n. Let u and v be
words of length of n.

1. If u is in the coset C + v, then C + u = C + v; that is, each word
in a coset determines that coset.

2. The word u is in the coset C + u.

3. If u + v is in C, then u and v are in the same coset.

4. If u + v is not in C, then u and v are in different cosets.

5. Every word in Kn is contained in one and only one coset of C;
that is, either C + u = C + v, or C + u and C + v have no words
in common.

6. |C + u|= |C|; that is, the number of words in a coset of C is
equal to the number of words in the code C.

7. If C has dimension k, then there are exactly 2n−k different cosets
of C, and each coset contains exactly 2kwords.
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8. The code C itself is one of its cosets.

Example 2.9.2. We list the cosets of the code

C= { 0000,1011,0101,1110}

• C itself is a coset.(Theorem 2.10.1 (8))

• Every word in C will determine the coset C by (tTheorem 2.10.1
(1) and (5)), so we pick a word u in K4 not in C. For later use in
decoding, it will help to pick u of smallest weight possible. So
let’s take u = 1000. Then we get the coset,

C + 1000 ={ 1000,0011,1101,0110}.

• Now pick another word, of small weight, in K but not in C or
C+1000, say 0100. Form another coset,

C + 0100 = {0100, 1111, 0001, 1010}.

• Repeating the process with 0010 yields the coset

C + 0010 = {0010,1001,0111,1100}

• The code C has dimension k = 2. Then,

2n−k= 24−2= 22= 4

We have listed 4 cosets with 2k= 2n= 4 words.and every word
in K4 is accounted for appearing in exactly one coset.

• Also observe that 0001 + 1010= 1011 is in C, thus 0001 and
1010 are in the same coset, namely C+0100 (see (3)). On the
other hand, 0100 + 0010= 0110 is not in C, and 0100 and 0010
are in different cosets (see (4)).
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2.10 MLD for Linear Code
Let C be a linear code. Assume the codeword v in C is transmitted
and the word w is received, resulting in the error pattern u = v + w.
Then w + u = v is in C, so the error pattern u and the received word
w are in the same coset of C by (3) of Theorem 2.10.1.

Since error patterns of small weight are the most likely to occur,
here is how MLD works for a linear code C. Upon receiving the word
w, we choose a word u of least weight in the coset C + w (which must
contain w) and conclude that v = w + u was the word sent.

Example 2.10.1. Let C={0000, 1011, 0101, 1110}. The cosets of C
(Example 2.10.2) are

Suppose w= 1101 is received.

C + w = C + 1101= {1101,0110,1000,0011}

The coset C + w= C+ 1101 containing w is the second one listed.
The word of least weight in this coset is u= 1000, which we choose
as the error pattern.
We conclude that,

v = w + u = 1101 + 1000 = 0101

0101was the most likely codeword sent.

Now suppose w=1111 is received.

C + w = C + 1111={1111,0100,1010,0001}

In the coset C+w containing 1111 there are two words of smallest
weight, 0100 and 0001. Since we are doing CMLD, we arbitrarily
select one of these, say u= 0100, for the error pattern, and conclude
that v = w + u= 1111 + 0100 = 1011 was a most likely codeword sent.
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Theorem 2.10.1. Let C be a linear code of length n. Let H be a
parity-check matrix for C. Let w and u be words in Kn.

1. wH = 0 if and only if w is a codeword in C.

2. wH = uH if and only if w and u lie in the same coset of C.

3. If u is the error pattern in a received word w, then uH is the sum
of the rows of H that correspond to the positions in which errors
occurred in transmission.
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CONCLUSION

Our aim was to take a note on coding theory by its breath of cov-
erage. Coding theory is the study of properties of codes and their
respective fitness for specific applications. Codes are used for data
compression, cryptography, error detection and correction, data
transmission and data storage. Codes are studied by various scien-
tific disciplines such as information theory, electrical engineering,
mathematics, linguistics and computer science-for the purpose of
designing efficient and reliable data transmission methods. This
typically involves the removal of redundancy and the correction or
detection of errors in the transmitted data. This project work helps
us to know more about coding theory.
I have much pleasure in conveying my heart full thanks to my teach-
ers and colleagues.
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